diff --git a/modules/deeplearning/cloud_fraction_fcn_abi_hkm_refl.py b/modules/deeplearning/cloud_fraction_fcn_abi_hkm_refl.py index 6d56d83069027b14b8c8cdce419d6f8b042ccb85..d4b2305384927af812c6c352dfe94e688ca5ec39 100644 --- a/modules/deeplearning/cloud_fraction_fcn_abi_hkm_refl.py +++ b/modules/deeplearning/cloud_fraction_fcn_abi_hkm_refl.py @@ -611,12 +611,13 @@ class SRCNN: self.train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy') self.test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy') - @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)]) + # @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)]) + @tf.function def train_step(self, inputs, labels): labels = tf.squeeze(labels, axis=[3]) with tf.GradientTape() as tape: - # pred = self.model([inputs], training=True) - pred = self.model({'2km': inputs[0], 'hkm': inputs[1]}, training=True) + # pred = self.model(inputs, training=True) + pred = self.model({'input_1': inputs[0], 'input_2': inputs[1]}, training=True) loss = self.loss(labels, pred) total_loss = loss if len(self.model.losses) > 0: @@ -632,11 +633,12 @@ class SRCNN: return loss - @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)]) + # @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)]) + @tf.function def test_step(self, inputs, labels): labels = tf.squeeze(labels, axis=[3]) - # pred = self.model([inputs], training=False) - pred = self.model({'2km': inputs[0], 'hkm': inputs[1]}, training=False) + # pred = self.model(inputs, training=False) + pred = self.model({'input_1': inputs[0], 'input_2': inputs[1]}, training=False) t_loss = self.loss(labels, pred) self.test_loss(t_loss) @@ -645,8 +647,8 @@ class SRCNN: # @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)]) # decorator commented out because pred.numpy(): pred not evaluated yet. def predict(self, inputs, labels): - # pred = self.model([inputs], training=False) - pred = self.model({'2km': inputs[0], 'hkm': inputs[1]}, training=False) + # pred = self.model(inputs, training=False) + pred = self.model({'input_1': inputs[0], 'input_2': inputs[1]}, training=False) # t_loss = self.loss(tf.squeeze(labels, axis=[3]), pred) t_loss = self.loss(labels, pred)