From e0fa76212b383f7910aeb4d24c2911fec4cb9e86 Mon Sep 17 00:00:00 2001
From: tomrink <rink@ssec.wisc.edu>
Date: Wed, 12 Apr 2023 15:14:13 -0500
Subject: [PATCH] snapshot...

---
 modules/util/abi_surfrad.py | 262 ++++++++++++++++++++++++++----------
 1 file changed, 192 insertions(+), 70 deletions(-)

diff --git a/modules/util/abi_surfrad.py b/modules/util/abi_surfrad.py
index 43c34256..1391b3e1 100644
--- a/modules/util/abi_surfrad.py
+++ b/modules/util/abi_surfrad.py
@@ -1,162 +1,284 @@
 import numpy as np
 import h5py
-from util.util import get_grid_values
+from util.util import get_grid_values, is_day
 import glob
 
-
-target_param = 'cloud_probability'
-# target_param = 'cld_opd_dcomp'
+keep_out_opd = ['/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/arm/2019/11/02/clavrx_VNP02IMG.A2019306.1912.001.2019307003236.uwssec.nc',
+                '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/arm/2019/04/13/clavrx_VNP02IMG.A2019103.1918.001.2019104005120.uwssec.nc',
+                '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/sioux_falls/2019/05/25/clavrx_VNP02IMG.A2019145.1936.001.2019146005424.uwssec.nc',
+                '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/sioux_falls/2019/11/01/clavrx_VNP02IMG.A2019305.1936.001.2019306005913.uwssec.nc',
+                '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/sioux_falls/2019/03/01/clavrx_VNP02IMG.A2019060.1930.001.2019061005942.uwssec.nc',
+                '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/table_mountain/2019/12/01/clavrx_VNP02IMG.A2019335.2012.001.2019336013827.uwssec.nc',
+                '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/table_mountain/2019/05/18/clavrx_VNP02IMG.A2019138.2006.001.2019139013059.uwssec.nc',
+                '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/fort_peck/2019/01/28/clavrx_VNP02IMG.A2019028.1930.001.2019029005408.uwssec.nc',
+                '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/fort_peck/2019/08/08/clavrx_VNP02IMG.A2019220.1930.001.2019221010714.uwssec.nc',
+                '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/madison/2019/10/13/clavrx_VNP02IMG.A2019286.1848.001.2019287001722.uwssec.nc',
+                '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/madison/2019/03/20/clavrx_VNP02IMG.A2019079.1830.001.2019079235918.uwssec.nc',
+                '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/madison/2019/12/26/clavrx_VNP02IMG.A2019360.1900.001.2019361001327.uwssec.nc',
+                '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/desert_rock/2019/02/05/clavrx_VNP02IMG.A2019036.2018.001.2019037030301.uwssec.nc',
+                '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/desert_rock/2019/03/30/clavrx_VNP02IMG.A2019089.2024.001.2019090015614.uwssec.nc',
+                '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/bondville_il/2019/11/03/clavrx_VNP02IMG.A2019307.1854.001.2019308001716.uwssec.nc',
+                '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/goodwin_creek/2019/04/15/clavrx_VNP02IMG.A2019105.1842.001.2019106001003.uwssec.nc',
+                '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/penn_state/2019/07/18/clavrx_VNP02IMG.A2019199.1742.001.2019199230925.uwssec.nc',
+                '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/penn_state/2019/02/02/clavrx_VNP02IMG.A2019033.1754.001.2019034011318.uwssec.nc']
+
+keep_out = keep_out_opd
+
+
+# target_param = 'cloud_probability'
+target_param = 'cld_opd_dcomp'
 
 group_name_i = 'super/'
 group_name_m = 'orig/'
 
 solzen_name = group_name_m + 'solar_zenith'
 
-label_params = [group_name_i+target_param]
-data_params = [group_name_m+'temp_ch31', group_name_m+'refl_ch01', group_name_m+target_param]
+# params_i = [group_name_i+'temp_11_0um', group_name_i+'refl_0_65um', group_name_i+target_param]
+# params_m = [group_name_m+'temp_11_0um', group_name_m+'refl_0_65um', group_name_m+target_param]
+params_i = [group_name_i+'temp_ch38', group_name_i+'refl_ch01', group_name_i+target_param]
+params_m = [group_name_m+'temp_ch38', group_name_m+'refl_ch01', group_name_m+target_param]
+
+param_idx_m = params_m.index(group_name_m + target_param)
+param_idx_i = params_i.index(group_name_i + target_param)
+
 
+def is_missing(p_idx, tile):
+    keep = np.invert(np.isnan(tile[p_idx, ]))
+    if np.sum(keep) / keep.size < 0.98:
+        return True
 
-def keep_tile(param, param_s, tile):
-    k = param_s.index(param)
-    grd_k = tile[k, ].copy()
+
+def keep_tile(p_idx, tile):
+    grd_k = tile[p_idx, ].copy()
 
     if target_param == 'cloud_probability':
-        grd_k = process_cld_prob_(grd_k)
+        grd_k = process_cld_prob(grd_k)
     elif target_param == 'cld_opd_dcomp':
-        grd_k = process_cld_opd_(grd_k)
+        grd_k = process_cld_opd(grd_k)
 
     if grd_k is not None:
-        tile[k, ] = grd_k
+        tile[p_idx, ] = grd_k
         return tile
     else:
         return None
 
 
-def process_cld_prob_(grd_k):
+def process_cld_prob(grd_k):
     keep = np.invert(np.isnan(grd_k))
     num_keep = np.sum(keep)
-    # if num_keep / grd_k.size < 0.98:
-    #     return None
-    keep = np.where(keep, np.logical_and(0.10 < grd_k, grd_k < 0.90), False)
-    if np.sum(keep)/num_keep < 0.25:
+    keep_clr = np.where(keep, grd_k < 0.30, False)
+    keep_cld = np.where(keep, grd_k > 0.70, False)
+    frac_clr = np.sum(keep_clr)/num_keep
+    frac_cld = np.sum(keep_cld)/num_keep
+    if not (frac_clr >= 0.20 and frac_cld >= 0.20):
         return None
-    grd_k = np.where(np.invert(keep), 0, grd_k)
+    grd_k = np.where(np.invert(keep), 0, grd_k)  # Convert NaN to 0
     return grd_k
 
 
-def process_cld_opd_(grd_k):
+def process_cld_opd(grd_k):
     keep = np.invert(np.isnan(grd_k))
     num_keep = np.sum(keep)
-    # if num_keep / grd_k.size < 0.98:
-    #     return None
-    grd_k = np.where(np.invert(keep), 0, grd_k)
-    keep = np.where(keep, np.logical_and(0.1 < grd_k, grd_k < 158.0), False)
-    if np.sum(keep)/num_keep < 0.50:
+    keep_cld = np.where(keep, np.logical_and(0.1 < grd_k, grd_k < 158.0), False)
+    frac_cld = np.sum(keep_cld)/num_keep
+    if not (0.10 < frac_cld < 0.90):
         return None
+    grd_k = np.where(np.invert(keep), 0, grd_k)  # Convert NaN to 0
     return grd_k
 
 
-def run_all(directory, out_directory, pattern='clavrx_*.nc', start=10):
+def run_all(directory, out_directory, day_night='ANY', pattern='clavrx_*.nc', start=10):
     cnt = start
-    total_num_samples = 0
+    total_num_train_samples = 0
+    total_num_valid_samples = 0
+    num_keep_x_tiles = 4
 
     path = directory + '**' + '/' + pattern
 
-    files = glob.glob(path, recursive=True)
+    all_files = glob.glob(path, recursive=True)
+    data_files = [f for f in all_files if f not in keep_out]
+    # data_files = glob.glob(path, recursive=True)
 
-    label_tiles = []
-    data_tiles = []
+    valid_tiles_i = []
+    train_tiles_i = []
+    valid_tiles_m = []
+    train_tiles_m = []
     f_cnt = 0
 
-    num_files = len(files)
+    num_files = len(data_files)
     print('Start, number of files: ', num_files)
 
-    for idx, f in enumerate(files):
+    total_num_not_missing = 0
+
+    for idx, data_f in enumerate(data_files):
         # if idx % 4 == 0:  # if we want to skip some files
         if True:
             try:
-                h5f = h5py.File(f, 'r')
+                h5f = h5py.File(data_f, 'r')
             except:
-                print('cant open file: ', f)
+                print('cant open file: ', data_f)
                 continue
 
             try:
-                run(h5f, data_params, data_tiles, label_params, label_tiles, kernel_size=5)
+                num_not_missing = run(h5f, params_m, train_tiles_m, valid_tiles_m,
+                                      params_i, train_tiles_i, valid_tiles_i,
+                                      num_keep_x_tiles=num_keep_x_tiles, tile_width=16, kernel_size=4, factor=4, day_night=day_night)
             except Exception as e:
                 print(e)
                 h5f.close()
                 continue
-
-            print(f)
+            print(data_f)
             f_cnt += 1
             h5f.close()
 
-            if len(data_tiles) == 0:
-                continue
-
-            if (f_cnt % 100) == 0:
-                num_samples = 0
-                if len(data_tiles) > 0:
-                    label = np.stack(label_tiles)
-                    data = np.stack(data_tiles)
-                    #np.save(out_directory + 'label_' + str(cnt), label)
-                    #np.save(out_directory + 'data_' + str(cnt), data)
-                    num_samples = data.shape[0]
+            total_num_not_missing += num_not_missing
 
-                label_tiles = []
-                data_tiles = []
+            if len(train_tiles_m) == 0 and len(valid_tiles_m) == 0:
+                continue
 
-                print('  num_samples, progress % : ', num_samples, int((f_cnt/num_files)*100))
-                total_num_samples += num_samples
-                print('total_num_samples: ', total_num_samples)
-                print('------------------------------------------------------------')
+            if (f_cnt % 20) == 0:
+                num_valid_samples = 0
+                if len(valid_tiles_m) > 0:
+                    valid_i = np.stack(valid_tiles_i)
+                    valid_m = np.stack(valid_tiles_m)
+                    np.save(out_directory + 'valid_mres_' + str(cnt), valid_m)
+                    np.save(out_directory + 'valid_ires_' + str(cnt), valid_i)
+                    num_valid_samples = valid_m.shape[0]
+
+                num_train_samples = 0
+                if len(train_tiles_m) > 0:
+                    train_i = np.stack(train_tiles_i)
+                    train_m = np.stack(train_tiles_m)
+                    np.save(out_directory + 'train_ires_' + str(cnt), train_i)
+                    np.save(out_directory + 'train_mres_' + str(cnt), train_m)
+                    num_train_samples = train_m.shape[0]
+
+                valid_tiles_i = []
+                train_tiles_i = []
+                valid_tiles_m = []
+                train_tiles_m = []
+
+                print('  num_train_samples, num_valid_samples, progress % : ', num_train_samples, num_valid_samples, int((f_cnt/num_files)*100))
+                total_num_train_samples += num_train_samples
+                total_num_valid_samples += num_valid_samples
+                print('total_num_train_samples, total_num_valid_samples, total_num_not_missing: ', total_num_train_samples,
+                      total_num_valid_samples, total_num_not_missing)
+                print('--------------------------------------------------')
 
                 cnt += 1
 
-    print('** total_num_samples: ', total_num_samples)
+    # Write out leftover, if any. Maybe make this better someday
+    num_valid_samples = 0
+    if len(valid_tiles_m) > 0:
+        valid_i = np.stack(valid_tiles_i)
+        valid_m = np.stack(valid_tiles_m)
+        np.save(out_directory + 'valid_mres_' + str(cnt), valid_m)
+        np.save(out_directory + 'valid_ires_' + str(cnt), valid_i)
+        num_valid_samples = valid_m.shape[0]
+
+    num_train_samples = 0
+    if len(train_tiles_m) > 0:
+        train_i = np.stack(train_tiles_i)
+        train_m = np.stack(train_tiles_m)
+        np.save(out_directory + 'train_ires_' + str(cnt), train_i)
+        np.save(out_directory + 'train_mres_' + str(cnt), train_m)
+        num_train_samples = train_m.shape[0]
+
+    print('  num_train_samples, num_valid_samples, progress % : ', num_train_samples, num_valid_samples,
+          int((f_cnt / num_files) * 100))
+    total_num_train_samples += num_train_samples
+    total_num_valid_samples += num_valid_samples
+    print('total_num_train_samples, total_num_valid_samples, total_num_not_missing: ', total_num_train_samples,
+          total_num_valid_samples, total_num_not_missing)
+    print('--------------------------------------------------')
+
+    print('** total_num_train_samples, total_num_valid_samples: ', total_num_train_samples, total_num_valid_samples)
 
 
 #  tile_width: Must be even!
 #  kernel_size: Must be odd!
-def run(h5f, param_s, tiles, lbl_param_s, lbl_tiles, kernel_size=3):
+def run(h5f, params_m, train_tiles_m, valid_tiles_m, params_i, train_tiles_i, valid_tiles_i,
+        num_keep_x_tiles=8, tile_width=64, kernel_size=3, factor=2, day_night='ANY'):
 
     border = int((kernel_size - 1)/2) + 1  # Need to add for interpolation with no edge effects
 
-    param_name = param_s[0]
+    param_name = params_m[0]
 
     num_lines = h5f[param_name].shape[0]
     num_pixels = h5f[param_name].shape[1]  # Must be even
 
+    if day_night != 'ANY':
+        solzen = get_grid_values(h5f, solzen_name, 0, 0, None, num_lines, num_pixels)
+
     grd_s = []
-    for param in param_s:
+    for param in params_m:
         try:
             grd = get_grid_values(h5f, param, 0, 0, None, num_lines, num_pixels)
             grd_s.append(grd)
         except Exception as e:
             print(e)
             return
-    data = np.stack(grd_s)
+    data_m = np.stack(grd_s)
 
     grd_s = []
-    for param in lbl_param_s:
+    for param in params_i:
         try:
-            grd = get_grid_values(h5f, param, 0, 0, None, num_lines*2, num_pixels*2)
+            grd = get_grid_values(h5f, param, 0, 0, None, num_lines*factor, num_pixels*factor)
             grd_s.append(grd)
         except Exception as e:
             print(e)
             return
-    label = np.stack(grd_s)
+    data_i = np.stack(grd_s)
+
+    tile_width += 2 * border
+
+    i_skip = tile_width
+    j_skip = tile_width
+    # i_start = int(num_pixels / 2) - int((num_keep_x_tiles * tile_width) / 2)
+    # j_start = 0
+    i_start = border - 1  # zero-based
+    j_start = border - 1  # zero-based
+
+    num_y_tiles = int(num_lines / tile_width) - 1
+
+    data_tiles_m = []
+    data_tiles_i = []
+    num_not_missing = 0
+
+    for j in range(num_y_tiles):
+        j_a = j_start + j * j_skip
+        j_b = j_a + tile_width
+
+        for i in range(num_keep_x_tiles):
+            i_a = i_start + i * i_skip
+            i_b = i_a + tile_width
+
+            if day_night == 'DAY' and not is_day(solzen[j_a:j_b, i_a:i_b]):
+                continue
+            elif day_night == 'NIGHT' and is_day(solzen[j_a:j_b, i_a:i_b]):
+                continue
+
+            nda_m = data_m[:, j_a:j_b, i_a:i_b]
+            nda_i = data_i[:, j_a*factor:j_b*factor, i_a*factor:i_b*factor]
+            if is_missing(param_idx_i, nda_i):
+                continue
+            num_not_missing += 1
 
-    nda = data[:, :, :]
-    nda = keep_tile(group_name_m + target_param, param_s, nda)
-    if nda is None:  # if none, no need to check the next one
-        return
+            nda_i = keep_tile(param_idx_i, nda_i)
+            if nda_i is not None:
+                data_tiles_m.append(nda_m)
+                data_tiles_i.append(nda_i)
 
-    nda_lbl = label[:, :, :]
-    nda_lbl = keep_tile(group_name_i + target_param, lbl_param_s, nda_lbl)
+    num_tiles = len(data_tiles_i)
+    num_valid = int(num_tiles * 0.10)
+    num_train = num_tiles - num_valid
 
-    if nda_lbl is not None:
-        tiles.append(nda)
-        lbl_tiles.append(nda_lbl)
+    for k in range(num_train):
+        train_tiles_m.append(data_tiles_m[k])
+        train_tiles_i.append(data_tiles_i[k])
 
+    for k in range(num_valid):
+        valid_tiles_m.append(data_tiles_m[num_train + k])
+        valid_tiles_i.append(data_tiles_i[num_train + k])
 
+    return num_not_missing
-- 
GitLab