From dc06a6eafa5efc43b10affc2d15bdba07c7d3358 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Tue, 9 May 2023 10:53:24 -0500 Subject: [PATCH] snapshot... --- modules/deeplearning/cloud_fraction_fcn_abi.py | 14 +++++++++++--- 1 file changed, 11 insertions(+), 3 deletions(-) diff --git a/modules/deeplearning/cloud_fraction_fcn_abi.py b/modules/deeplearning/cloud_fraction_fcn_abi.py index e990e5fa..683f2c2b 100644 --- a/modules/deeplearning/cloud_fraction_fcn_abi.py +++ b/modules/deeplearning/cloud_fraction_fcn_abi.py @@ -280,6 +280,7 @@ class SRCNN: self.test_labels = [] self.test_preds = [] self.test_probs = None + self.test_input = [] self.learningRateSchedule = None self.num_data_samples = None @@ -590,6 +591,7 @@ class SRCNN: self.test_labels.append(labels) self.test_preds.append(pred.numpy()) + self.test_input.append(inputs) self.test_loss(t_loss) self.test_accuracy(labels, pred) @@ -732,9 +734,10 @@ class SRCNN: labels = np.concatenate(self.test_labels) preds = np.concatenate(self.test_preds) + inputs = np.concatenate(self.test_input) print(labels.shape, preds.shape) - return labels, preds + return labels, preds, inputs def do_evaluate(self, inputs, ckpt_dir): @@ -785,10 +788,15 @@ class SRCNN: def run_restore_static(directory, ckpt_dir, out_file=None): nn = SRCNN() - labels, preds = nn.run_restore(directory, ckpt_dir) + labels, preds, inputs = nn.run_restore(directory, ckpt_dir) if out_file is not None: np.save(out_file, - [np.squeeze(labels), preds.argmax(axis=3)]) + [np.squeeze(labels), preds.argmax(axis=3), + denormalize(inputs[:, 1:65, 1:65, 0], 'temp_11_0um_nom', mean_std_dct), + denormalize(inputs[:, 1:65, 1:65, 1], 'refl_0_65um_nom', mean_std_dct), + denormalize(inputs[:, 1:65, 1:65, 2], 'refl_0_65um_nom', mean_std_dct), + inputs[:, 1:65, 1:65, 3], + inputs[:, 1:65, 1:65, 4]]) def run_evaluate_static(in_file, out_file, ckpt_dir): -- GitLab