From d96a7edfb140e75d7857b3c0326d7bd15bf2b445 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Mon, 17 Oct 2022 14:32:53 -0500 Subject: [PATCH] normalize before upsampling (nans) --- modules/deeplearning/srcnn_l1b_l2.py | 18 ++++++++++-------- 1 file changed, 10 insertions(+), 8 deletions(-) diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index 1d9fe809..899539f6 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -225,22 +225,23 @@ class SRCNN: for param in data_params: idx = params.index(param) tmp = input_data[:, idx, 3:131:2, 3:131:2] - tmp = resample_2d_linear(x_64, y_64, tmp, t, s) tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) + tmp = resample_2d_linear(x_64, y_64, tmp, t, s) data_norm.append(tmp) # -------- idx = params.index('refl_0_65um_nom') tmp = input_data[:, idx, 3:131, 3:131] + tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) # tmp = input_data[:, idx, 3:131:2, 3:131:2] # tmp = resample_2d_linear(x_64, y_64, tmp, t, s) - tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) data_norm.append(tmp) # -------- tmp = input_data[:, label_idx, 3:131:2, 3:131:2] - tmp = np.where(np.isnan(tmp), 0, tmp) - tmp = resample_2d_linear(x_64, y_64, tmp, t, s) if label_param != 'cloud_fraction': tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) + else: + tmp = np.where(np.isnan(tmp), 0, tmp) + tmp = resample_2d_linear(x_64, y_64, tmp, t, s) data_norm.append(tmp) # --------- data = np.stack(data_norm, axis=3) @@ -248,10 +249,11 @@ class SRCNN: # label = input_data[:, label_idx, 3:131:2, 3:131:2] label = input_data[:, label_idx, 3:131, 3:131] - label = np.where(np.isnan(label), 0, label) - label = np.expand_dims(label, axis=3) if label_param != 'cloud_fraction': label = normalize(label, label_param, mean_std_dct) + else: + label = np.where(np.isnan(label), 0, label) + label = np.expand_dims(label, axis=3) data = data.astype(np.float32) label = label.astype(np.float32) @@ -692,16 +694,16 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): x_up = np.arange(0, lenx, 0.5) y_up = np.arange(0, leny, 0.5) - grd_a = resample_2d_linear_one(x, y, grd_a, x_up, y_up) grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct) + grd_a = resample_2d_linear_one(x, y, grd_a, x_up, y_up) grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct) - grd_c = resample_2d_linear_one(x, y, grd_c, x_up, y_up) if label_param == 'cloud_fraction': grd_c = np.where(np.isnan(grd_c), 0, grd_c) else: grd_c = normalize(grd_c, label_param, mean_std_dct) + grd_c = resample_2d_linear_one(x, y, grd_c, x_up, y_up) data = np.stack([grd_a, grd_b, grd_c], axis=2) data = np.expand_dims(data, axis=0) -- GitLab