From d4ee60d8ea106802dd6ca4353f96e7340608dcdb Mon Sep 17 00:00:00 2001
From: tomrink <rink@ssec.wisc.edu>
Date: Mon, 13 Nov 2023 13:04:44 -0600
Subject: [PATCH] snapshot...

---
 modules/deeplearning/icing_fcn.py | 14 +++++++-------
 1 file changed, 7 insertions(+), 7 deletions(-)

diff --git a/modules/deeplearning/icing_fcn.py b/modules/deeplearning/icing_fcn.py
index 7271cd68..aeb70a63 100644
--- a/modules/deeplearning/icing_fcn.py
+++ b/modules/deeplearning/icing_fcn.py
@@ -1191,18 +1191,18 @@ def run_evaluate_static_avg(ckpt_dir_s_path, day_night='NIGHT', l1b_andor_l2='BO
         sum += w
     avg_weights = sum / len(weight_s)
 
-    # ---------------------------------------------
-
+    # -- Make a new model for the averaged weights
     new_model = IcingIntensityFCN(day_night=day_night, l1b_or_l2=l1b_andor_l2, use_flight_altitude=use_flight_altitude)
     new_model.build_model()
     new_model.build_training()
     new_model.build_evaluation()
 
-    if ckpt_dir is None:
-        if not os.path.exists(modeldir):
-            os.mkdir(modeldir)
-        ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=new_model.model)
-        ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3)
+    # -- save the averaged weights to a new the model
+    if not os.path.exists(modeldir):
+        os.mkdir(modeldir)
+    ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=new_model.model)
+    ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3)
+
     new_model.model.set_weights(avg_weights)
     ckpt_manager.save()
 
-- 
GitLab