diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index 80fcbe4a211c623772c38fdbf143d478245e6fa5..a460a0d3a9dfd8abaf3f81141561e30d1bc3778d 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -705,50 +705,6 @@ def run_restore_static(directory, ckpt_dir): nn.run_restore(directory, ckpt_dir) -# def run_evaluate_static(in_file, out_file, ckpt_dir): -# N = 8 -# sub_y, sub_x = (N+1) * 128, (N+1) * 128 -# y_0, x_0, = 2500 - int(sub_y/2), 2500 - int(sub_x/2) -# -# slc_y_2, slc_x_2 = slice(1, 128*N + 6, 2), slice(1, 128*N + 6, 2) -# y_2, x_2 = np.arange((128*N)/2 + 3), np.arange((128*N)/2 + 3) -# t, s = np.arange(1, (128*N)/2 + 2, 0.5), np.arange(1, (128*N)/2 + 2, 0.5) -# -# h5f = h5py.File(in_file, 'r') -# grd_a = get_grid_values_all(h5f, 'temp_11_0um_nom') -# grd_a = grd_a[y_0:y_0+sub_y, x_0:x_0+sub_x] -# grd_a = grd_a[slc_y_2, slc_x_2] -# bt = grd_a -# grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct) -# grd_a = resample_2d_linear_one(x_2, y_2, grd_a, t, s) -# -# grd_b = get_grid_values_all(h5f, 'refl_0_65um_nom') -# grd_b = grd_b[y_0:y_0+sub_y, x_0:x_0+sub_x] -# grd_b = grd_b[slc_y_2, slc_x_2] -# refl = grd_b -# grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct) -# grd_b = resample_2d_linear_one(x_2, y_2, grd_b, t, s) -# -# grd_c = get_grid_values_all(h5f, label_param) -# grd_c = grd_c[y_0:y_0+sub_y, x_0:x_0+sub_x] -# grd_c = grd_c[slc_y_2, slc_x_2] -# if label_param != 'cloud_probability': -# grd_c = normalize(grd_c, label_param, mean_std_dct) -# grd_c = resample_2d_linear_one(x_2, y_2, grd_c, t, s) -# -# data = np.stack([grd_a, grd_b, grd_c], axis=2) -# data = np.expand_dims(data, axis=0) -# -# nn = SRCNN() -# out_sr = nn.run_evaluate(data, ckpt_dir) -# if label_param != 'cloud_probability': -# out_sr = denormalize(out_sr, label_param, mean_std_dct) -# if out_file is not None: -# np.save(out_file, out_sr) -# else: -# return out_sr, bt, refl - - def run_evaluate_static(in_file, out_file, ckpt_dir): N = 8