diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index 1c778e95ec9eca25f579ea970842756d32799e90..a8dcf555e85d729d2d7081adc3c1d5851bc0df5b 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -752,30 +752,22 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): def run_evaluate_static_2(in_file, out_file, ckpt_dir): nda = np.load(in_file) - grd_a = nda[:, 0, :, :] - grd_a = grd_a[:, 3:131:2, 3:131:2] - - grd_b = nda[:, 2, 3:131, 3:131] - - grd_c = nda[:, 3, :, :] - grd_c = grd_c[:, 3:131:2, 3:131:2] - - num, leny, lenx = grd_a.shape - x = np.arange(lenx) - y = np.arange(leny) - x_up = np.arange(0, lenx, 0.5) - y_up = np.arange(0, leny, 0.5) + grd_a = nda[:, 0, :, :] + grd_a = grd_a[:, slc_y_2, slc_x_2] grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct) - grd_a = resample_2d_linear(x, y, grd_a, x_up, y_up) + grd_a = resample_2d_linear(x_2, y_2, grd_a, t, s) + grd_b = nda[:, 2, :, :] + grd_b = grd_b[:, slc_y_2, slc_x_2] grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct) + grd_b = resample_2d_linear(x_2, y_2, grd_b, t, s) - if label_param == 'cloud_fraction': - grd_c = np.where(np.isnan(grd_c), 0, grd_c) - else: + grd_c = nda[:, 3, :, :] + grd_c = grd_c[:, slc_y_2, slc_x_2] + if label_param != 'cloud_fraction': grd_c = normalize(grd_c, label_param, mean_std_dct) - grd_c = resample_2d_linear(x, y, grd_c, x_up, y_up) + grd_c = resample_2d_linear(x_2, y_2, grd_c, t, s) data = np.stack([grd_a, grd_b, grd_c], axis=3) print(data.shape) @@ -783,7 +775,7 @@ def run_evaluate_static_2(in_file, out_file, ckpt_dir): nn = SRCNN() out_sr = nn.run_evaluate(data, ckpt_dir) if label_param != 'cloud_fraction': - # out_sr = denormalize(out_sr, label_param, mean_std_dct) + out_sr = denormalize(out_sr, label_param, mean_std_dct) pass if out_file is not None: np.save(out_file, out_sr)