diff --git a/modules/deeplearning/espcn.py b/modules/deeplearning/espcn.py index d3e326b79a0f9d1a881d304e48de52544605f1f8..e049d9c8135f7803f0f117c177d6c87d40e45212 100644 --- a/modules/deeplearning/espcn.py +++ b/modules/deeplearning/espcn.py @@ -204,7 +204,7 @@ class ESPCN: self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) # self.X_img = tf.keras.Input(shape=(36, 36, self.n_chans)) - # self.X_img = tf.keras.Input(shape=(32, 32, self.n_chans)) + self.X_img = tf.keras.Input(shape=(32, 32, self.n_chans)) self.inputs.append(self.X_img) @@ -391,13 +391,17 @@ class ESPCN: conv_b = build_conv2d_block(conv_b, num_filters, 'Residual_Block_3') - conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding)(conv_b) + conv_b = tf.keras.layers.Conv2D(num_filters // 2, kernel_size=3, strides=1, padding=padding)(conv_b) conv = conv + conv_b + print(conv.shape) - conv = tf.keras.layers.Conv2D(num_filters * (factor ** 2), 3, padding='same')(conv) + # conv = tf.keras.layers.Conv2D(num_filters * (factor ** 2), 3, padding='same')(conv) + conv = tf.keras.layers.Conv2D((factor ** 2), 3, padding='same')(conv) + print(conv.shape) conv = tf.nn.depth_to_space(conv, factor) + print(conv.shape) self.logits = tf.keras.layers.Conv2D(1, kernel_size=3, strides=1, padding=padding, name='regression')(conv)