diff --git a/modules/deeplearning/cloud_fraction_fcn_abi.py b/modules/deeplearning/cloud_fraction_fcn_abi.py index 4dc56d722284ac3a10d11b38b8dc2e3873373cde..9b535ca39381020bc4b99ac45d3943f4ef8500ea 100644 --- a/modules/deeplearning/cloud_fraction_fcn_abi.py +++ b/modules/deeplearning/cloud_fraction_fcn_abi.py @@ -71,25 +71,13 @@ print('data_params_full: ', data_params_full) print('label_param: ', label_param) KERNEL_SIZE = 3 -N_X = N_Y = 1 X_LEN = Y_LEN = 64 if KERNEL_SIZE == 3: - slc_x = slice(0, int((N_X*X_LEN)/4) + 2) - slc_y = slice(0, int((N_Y*Y_LEN)/4) + 2) - x_64 = slice(4, N_X*X_LEN + 4) - y_64 = slice(4, N_Y*Y_LEN + 4) -# elif KERNEL_SIZE == 5: These no longer apply here -# slc_x = slice(3, 135) -# slc_y = slice(3, 135) -# slc_x_2 = slice(2, 137, 2) -# slc_y_2 = slice(2, 137, 2) -# x_128 = slice(5, 133) -# y_128 = slice(5, 133) -# t = np.arange(1, 67, 0.5) -# s = np.arange(1, 67, 0.5) -# x_2 = np.arange(68) -# y_2 = np.arange(68) + slc_x = slice(0, int(X_LEN/4) + 2) + slc_y = slice(0, int(Y_LEN/4) + 2) + x_64 = slice(4, X_LEN + 4) + y_64 = slice(4, Y_LEN + 4) # ---------------------------------------- @@ -342,21 +330,6 @@ class SRCNN: tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) data_norm.append(tmp) - # for param in data_params_full: - # idx = params_i.index(param) - # tmp = input_label[:, idx, :, :] - # - # lo, hi, std, avg = get_min_max_std(tmp) - # lo = normalize(lo, param, mean_std_dct) - # hi = normalize(hi, param, mean_std_dct) - # # avg = normalize(avg, param, mean_std_dct) - # - # data_norm.append(lo[:, slc_y, slc_x]) - # data_norm.append(hi[:, slc_y, slc_x]) - # data_norm.append(std[:, slc_y, slc_x]) - # --------------------------------------------------- - # If next uncommented, take out get_grid_cell_mean - # tmp = input_data[:, label_idx, :, :] tmp = input_label[:, label_idx_i, :, :] tmp = get_grid_cell_mean(tmp) tmp = tmp[:, slc_y, slc_x]