diff --git a/modules/deeplearning/espcn.py b/modules/deeplearning/espcn.py index 06abdbfd61021a079a80ff3ef85fea71cda0e092..2890ce25b18fb335e12d6a8d6b89de9ebda801af 100644 --- a/modules/deeplearning/espcn.py +++ b/modules/deeplearning/espcn.py @@ -212,11 +212,11 @@ class ESPCN: self.n_chans = 1 # self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) - self.X_img = tf.keras.Input(shape=(30, 30, self.n_chans)) + self.X_img = tf.keras.Input(shape=(36, 36, self.n_chans)) self.inputs.append(self.X_img) # self.inputs.append(tf.keras.Input(shape=(None, None, self.n_chans))) - self.inputs.append(tf.keras.Input(shape=(30, 30, self.n_chans))) + self.inputs.append(tf.keras.Input(shape=(36, 36, self.n_chans))) self.DISK_CACHE = False @@ -411,7 +411,7 @@ class ESPCN: input_2d = self.inputs[0] print('input: ', input_2d.shape) conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding='VALID', activation=None)(input_2d) - conv = conv[:, 4:20, 4:20, :] + # conv = conv[:, 4:20, 4:20, :] print('Contracting Branch') print('input: ', conv.shape) skip = conv