diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index bb3bfbf3e805a3dfcfb861b2d723d54181c5d009..377e860818b5c2dba7c68dd19824e863e2b26159 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -49,14 +49,14 @@ mean_std_dct.update(mean_std_dct_l2) #params = ['temp_11_0um_nom', 'temp_12_0um_nom', 'refl_0_65um_nom', 'cloud_fraction'] #data_params = ['temp_11_0um_nom', 'temp_12_0um_nom', 'refl_0_65um_nom'] -params = ['temp_11_0um_nom', 'temp_12_0um_nom', 'cloud_fraction'] +params = ['temp_11_0um_nom', 'temp_12_0um_nom', 'refl_0_65um_nom', 'cloud_fraction'] data_params = ['temp_11_0um_nom'] label_params = ['cloud_fraction'] DO_ZERO_OUT = False -label_idx = 2 +label_idx = 3 label_param = params[label_idx] print('data_params: ', data_params) print('label_params: ', label_params) @@ -231,9 +231,13 @@ class SRCNN: tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) data_norm.append(tmp) # -------- + idx = params.index('refl_0_65um_nom') + tmp = input_data[:, idx, 3:131, 3:131] + tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) + data_norm.append(tmp) + # -------- tmp = input_data[:, label_idx, 3:131:2, 3:131:2] tmp = resample_2d_linear(x_64, y_64, tmp, t, s) - #tmp = normalize(tmp, 'temp_11_0um_nom', mean_std_dct) data_norm.append(tmp) # --------- data = np.stack(data_norm, axis=3)