diff --git a/modules/deeplearning/cloud_fraction_fcn.py b/modules/deeplearning/cloud_fraction_fcn.py index a17e2cddb633760c3224fc849e6abd240059ba15..a73c448262a20b26739204c9b6b28f661b8f06fb 100644 --- a/modules/deeplearning/cloud_fraction_fcn.py +++ b/modules/deeplearning/cloud_fraction_fcn.py @@ -76,18 +76,18 @@ KERNEL_SIZE = 3 # target size: (128, 128) N = 1 if KERNEL_SIZE == 3: - # slc_x = slice(2, N*128 + 4) - # slc_y = slice(2, N*128 + 4) - slc_x_2 = slice(1, N*128 + 6, 2) - slc_y_2 = slice(1, N*128 + 6, 2) - x_2 = np.arange(int((N*128)/2) + 3) - y_2 = np.arange(int((N*128)/2) + 3) - t = np.arange(0, int((N*128)/2) + 3, 0.5) - s = np.arange(0, int((N*128)/2) + 3, 0.5) - x_k = slice(1, N*128 + 3) - y_k = slice(1, N*128 + 3) - slc_x = slice(1, 67) - slc_y = slice(1, 67) + # # slc_x = slice(2, N*128 + 4) + # # slc_y = slice(2, N*128 + 4) + # slc_x_2 = slice(1, N*128 + 6, 2) + # slc_y_2 = slice(1, N*128 + 6, 2) + # x_2 = np.arange(int((N*128)/2) + 3) + # y_2 = np.arange(int((N*128)/2) + 3) + # t = np.arange(0, int((N*128)/2) + 3, 0.5) + # s = np.arange(0, int((N*128)/2) + 3, 0.5) + # x_k = slice(1, N*128 + 3) + # y_k = slice(1, N*128 + 3) + slc_x = slice(1, int((N*128)/2) + 3) + slc_y = slice(1, int((N*128)/2) + 3) x_128 = slice(4, N*128 + 4) y_128 = slice(4, N*128 + 4) elif KERNEL_SIZE == 5: @@ -127,11 +127,11 @@ def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn. return conv -def upsample(tmp): - tmp = tmp[:, slc_y_2, slc_x_2] - tmp = resample_2d_linear(x_2, y_2, tmp, t, s) - tmp = tmp[:, y_k, x_k] - return tmp +# def upsample(tmp): +# tmp = tmp[:, slc_y_2, slc_x_2] +# tmp = resample_2d_linear(x_2, y_2, tmp, t, s) +# tmp = tmp[:, y_k, x_k] +# return tmp def upsample_mean(grd):