diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index aa2e49cd78854971b63c09cba3c99fd16d184d0f..894d05f7f476d0638f17258764ee242b5768d49a 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -65,21 +65,37 @@ x_134 = np.arange(134) y_134 = np.arange(134) x_64 = np.arange(64) y_64 = np.arange(64) -x_134_2 = x_134[3:131:2] -y_134_2 = y_134[3:131:2] + +x_134_2 = slice(3, 131, 2) +y_134_2 = slice(3, 131, 2) +# x_134_2 = x_134[3:131:2] +# y_134_2 = y_134[3:131:2] + t = np.arange(0, 64, 0.5) s = np.arange(0, 64, 0.5) -x_128_2 = x_134[3:131:2] -y_128_2 = y_134[3:131:2] -x_128 = x_134[3:131] -y_128 = y_134[3:131] +x_128_2 = slice(3, 131, 2) +y_128_2 = slice(3, 131, 2) +x_128 = slice(3, 131) +y_128 = slice(3, 131) + +# x_128_2 = x_134[3:131:2] +# y_128_2 = y_134[3:131:2] +# x_128 = x_134[3:131] +# y_128 = y_134[3:131] + #----------- New # x_134_2 = x_134[1:134:2] # t = np.arange(1, 66, 0.5) +# s = np.arange(1, 66, 0.5) #-------------------------- +slc_x_2 = x_128_2 +slc_y_2 = y_128_2 +slc_x = x_128 +slc_y = y_128 + def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.relu, padding='SAME', kernel_initializer='he_uniform', scale=None, @@ -233,19 +249,22 @@ class SRCNN: data_norm = [] for param in data_params: idx = params.index(param) - tmp = input_data[:, idx, y_128_2, x_128_2] + # tmp = input_data[:, idx, y_128_2, x_128_2] + tmp = input_data[:, idx, slc_y_2, slc_x_2] tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) tmp = resample_2d_linear(x_64, y_64, tmp, t, s) data_norm.append(tmp) # -------------------------- param = 'refl_0_65um_nom' idx = params.index(param) - tmp = input_data[:, idx, y_128_2, x_128_2] + # tmp = input_data[:, idx, y_128_2, x_128_2] + tmp = input_data[:, idx, slc_y_2, slc_x_2] tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) tmp = resample_2d_linear(x_64, y_64, tmp, t, s) data_norm.append(tmp) # -------- - tmp = input_data[:, label_idx, y_128_2, x_128_2] + # tmp = input_data[:, label_idx, y_128_2, x_128_2] + tmp = input_data[:, label_idx, slc_y_2, slc_x_2] if label_param != 'cloud_fraction': tmp = normalize(tmp, label_param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) else: @@ -257,7 +276,8 @@ class SRCNN: data = data.astype(np.float32) # ----------------------------------------------------- # ----------------------------------------------------- - label = input_data[:, label_idx, y_128, x_128] + # label = input_data[:, label_idx, y_128, x_128] + label = input_data[:, label_idx, slc_y, slc_x] if label_param != 'cloud_fraction': label = normalize(label, label_param, mean_std_dct) else: