diff --git a/modules/deeplearning/cnn_cld_frac_mod_res.py b/modules/deeplearning/cnn_cld_frac_mod_res.py
index ed8a26ae38e865dbe6e0c875841ff2408bc58820..e79550f8f64a56f14b8f1cba6e776c3559761b8b 100644
--- a/modules/deeplearning/cnn_cld_frac_mod_res.py
+++ b/modules/deeplearning/cnn_cld_frac_mod_res.py
@@ -62,12 +62,12 @@ IMG_DEPTH = 1
 label_param = 'cloud_probability'
 
 params = ['temp_11_0um_nom', 'refl_0_65um_nom', label_param]
-params_i = ['refl_0_65um_nom', label_param]
+# params_i = ['refl_0_65um_nom', label_param]
 data_params_half = ['temp_11_0um_nom']
 data_params_full = ['refl_0_65um_nom']
 
-label_idx = params_i.index(label_param)
-# label_idx = 0
+# label_idx = params_i.index(label_param)
+label_idx = params.index(label_param)
 
 print('data_params_half: ', data_params_half)
 print('data_params_full: ', data_params_full)
@@ -315,42 +315,42 @@ class SRCNN:
         tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT)
 
     def get_in_mem_data_batch(self, idxs, is_training):
-        # if is_training:
-        #     files = self.train_data_files
-        # else:
-        #     files = self.test_data_files
-        #
-        # data_s = []
-        # for k in idxs:
-        #     f = files[k]
-        #     try:
-        #         nda = np.load(f)
-        #     except Exception:
-        #         print(f)
-        #         continue
-        #     data_s.append(nda)
-        # input_data = np.concatenate(data_s)
-        # input_label = input_data[:, label_idx, :, :]
-
         if is_training:
-            data_files = self.train_data_files
-            label_files = self.train_label_files
+            files = self.train_data_files
         else:
-            data_files = self.test_data_files
-            label_files = self.test_label_files
+            files = self.test_data_files
 
         data_s = []
-        label_s = []
         for k in idxs:
-            f = data_files[k]
-            nda = np.load(f)
+            f = files[k]
+            try:
+                nda = np.load(f)
+            except Exception:
+                print(f)
+                continue
             data_s.append(nda)
-
-            f = label_files[k]
-            nda = np.load(f)
-            label_s.append(nda)
         input_data = np.concatenate(data_s)
-        input_label = np.concatenate(label_s)
+        # input_label = input_data[:, label_idx, :, :]
+
+        # if is_training:
+        #     data_files = self.train_data_files
+        #     label_files = self.train_label_files
+        # else:
+        #     data_files = self.test_data_files
+        #     label_files = self.test_label_files
+        #
+        # data_s = []
+        # label_s = []
+        # for k in idxs:
+        #     f = data_files[k]
+        #     nda = np.load(f)
+        #     data_s.append(nda)
+        #
+        #     f = label_files[k]
+        #     nda = np.load(f)
+        #     label_s.append(nda)
+        # input_data = np.concatenate(data_s)
+        # input_label = np.concatenate(label_s)
 
         data_norm = []
         for param in data_params_half:
@@ -360,15 +360,14 @@ class SRCNN:
             if DO_ESPCN:
                 tmp = tmp[:, slc_y_2, slc_x_2]
             else:  # Half res upsampled to full res:
-                # tmp = get_grid_cell_mean(tmp)
+                tmp = get_grid_cell_mean(tmp)
                 tmp = tmp[:, 0:66, 0:66]
             tmp = normalize(tmp, param, mean_std_dct)
             data_norm.append(tmp)
 
         for param in data_params_full:
-            idx = params_i.index(param)
-            # tmp = input_data[:, idx, :, :]
-            tmp = input_label[:, idx, :, :]
+            idx = params.index(param)
+            tmp = input_data[:, idx, :, :]
             tmp = tmp.copy()
 
             lo, hi, std, avg = get_min_max_std(tmp)
@@ -382,15 +381,12 @@ class SRCNN:
             data_norm.append(avg[:, 0:66, 0:66])
             # data_norm.append(std[:, 0:66, 0:66])
         # ---------------------------------------------------
-        # tmp = input_data[:, label_idx, :, :]
-        tmp = input_data[:, 2, :, :]
+        tmp = input_data[:, label_idx, :, :]
         tmp = tmp.copy()
-        tmp = np.where(np.isnan(tmp), 0, tmp)
         if DO_ESPCN:
             tmp = tmp[:, slc_y_2, slc_x_2]
         else:  # Half res upsampled to full res:
-            # tmp = get_grid_cell_mean(tmp)
-            tmp = np.where(np.isnan(tmp), 0, tmp)
+            tmp = get_grid_cell_mean(tmp)
             tmp = tmp[:, 0:66, 0:66]
         if label_param != 'cloud_probability':
             tmp = normalize(tmp, label_param, mean_std_dct)
@@ -401,7 +397,7 @@ class SRCNN:
         data = data.astype(np.float32)
         # -----------------------------------------------------
         # -----------------------------------------------------
-        label = input_label[:, label_idx, :, :]
+        label = input_data[:, label_idx, :, :]
         label = label.copy()
         label = label[:, y_128, x_128]
         if NumClasses == 5:
@@ -468,13 +464,13 @@ class SRCNN:
         self.test_dataset = dataset
 
     def setup_pipeline(self, train_data_files, train_label_files, test_data_files, test_label_files, num_train_samples):
-        self.train_data_files = train_data_files
-        self.train_label_files = train_label_files
-        self.test_data_files = test_data_files
-        self.test_label_files = test_label_files
-
         # self.train_data_files = train_data_files
+        # self.train_label_files = train_label_files
         # self.test_data_files = test_data_files
+        # self.test_label_files = test_label_files
+
+        self.train_data_files = train_data_files
+        self.test_data_files = test_data_files
 
         trn_idxs = np.arange(len(train_data_files))
         np.random.shuffle(trn_idxs)
@@ -801,15 +797,15 @@ class SRCNN:
         return pred
 
     def run(self, directory, ckpt_dir=None, num_data_samples=50000):
-        train_data_files = glob.glob(directory+'train*mres*.npy')
-        valid_data_files = glob.glob(directory+'valid*mres*.npy')
-        train_label_files = glob.glob(directory+'train*ires*.npy')
-        valid_label_files = glob.glob(directory+'valid*ires*.npy')
-        self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, num_data_samples)
-
-        # train_data_files = glob.glob(directory+'data_train_*.npy')
-        # valid_data_files = glob.glob(directory+'data_valid_*.npy')
-        # self.setup_pipeline(train_data_files, None, valid_data_files, None, num_data_samples)
+        # train_data_files = glob.glob(directory+'train*mres*.npy')
+        # valid_data_files = glob.glob(directory+'valid*mres*.npy')
+        # train_label_files = glob.glob(directory+'train*ires*.npy')
+        # valid_label_files = glob.glob(directory+'valid*ires*.npy')
+        # self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, num_data_samples)
+
+        train_data_files = glob.glob(directory+'data_train_*.npy')
+        valid_data_files = glob.glob(directory+'data_valid_*.npy')
+        self.setup_pipeline(train_data_files, None, valid_data_files, None, num_data_samples)
 
         self.build_model()
         self.build_training()