From c2a4f147faa60467f56bd2308645baf8be56c256 Mon Sep 17 00:00:00 2001
From: tomrink <rink@ssec.wisc.edu>
Date: Sun, 2 Jan 2022 09:35:12 -0600
Subject: [PATCH] snapshot...

---
 modules/icing/pirep_goes.py | 112 ++++++++++++++++++++++++++----------
 1 file changed, 82 insertions(+), 30 deletions(-)

diff --git a/modules/icing/pirep_goes.py b/modules/icing/pirep_goes.py
index 7efbb790..83018033 100644
--- a/modules/icing/pirep_goes.py
+++ b/modules/icing/pirep_goes.py
@@ -4,8 +4,8 @@ import pickle
 import matplotlib.pyplot as plt
 import os
 from util.util import get_time_tuple_utc, GenericException, add_time_range_to_filename, is_night, is_day, \
-    check_oblique, make_times, find_bin_index, get_timestamp, homedir, write_icing_file, make_for_full_domain_predict, \
-    make_for_full_domain_predict2
+    check_oblique, get_timestamp, homedir, write_icing_file, make_for_full_domain_predict, \
+    make_for_full_domain_predict2, get_indexes_within_threshold
 from util.plot import make_icing_image
 from util.geos_nav import get_navigation, get_lon_lat_2d_mesh
 from util.setup import model_path_day, model_path_night
@@ -1627,8 +1627,8 @@ def normalize(data, param, mean_std_dict, add_noise=False, noise_scale=1.0, seed
     return data
 
 
-lon_space = np.linspace(-180, 180, 361)
-lat_space = np.linspace(-90, 90, 181)
+lon_space = np.linspace(-180, 180, 721)
+lat_space = np.linspace(-90, 90, 361)
 
 
 def spatial_filter(icing_dict):
@@ -1637,6 +1637,7 @@ def spatial_filter(icing_dict):
     grd_y_hi = lat_space.shape[0] - 1
 
     grd_bins = np.full((lat_space.shape[0], lon_space.shape[0]), 0)
+    grd_bins_keys = [[[] for i in range(lon_space.shape[0])] for j in range(lat_space.shape[0])]
 
     for key in keys:
         rpts = icing_dict.get(key)
@@ -1653,33 +1654,84 @@ def spatial_filter(icing_dict):
                 continue
 
             grd_bins[lat_idx, lon_idx] += 1
+            grd_bins_keys[lat_idx][lon_idx].append(key)
 
-    return grd_bins
-
-
-# def spatial_filter2(icing_dict):
-#     keys = icing_dict.keys()
-#     grd_x_hi = lon_space.shape[0] - 1
-#     grd_y_hi = lat_space.shape[0] - 1
-#
-#     grd_bins = np.full((lat_space.shape[0], lon_space.shape[0]), 0)
-#
-#     for key in keys:
-#             tup = icing_dict.get(key)
-#             lat = tup[0]
-#             lon = tup[1]
-#
-#             lon_idx = np.searchsorted(lon_space, lon)
-#             lat_idx = np.searchsorted(lat_space, lat)
-#
-#             if lon_idx < 0 or lon_idx > grd_x_hi:
-#                 continue
-#             if lat_idx < 0 or lat_idx > grd_y_hi:
-#                 continue
-#
-#             grd_bins[lat_idx, lon_idx] += 1
-#
-#     return grd_bins
+    return grd_bins, grd_bins_keys
+
+
+def spatial_filter2(icing_dict):
+    keys = icing_dict.keys()
+    grd_x_hi = lon_space.shape[0] - 1
+    grd_y_hi = lat_space.shape[0] - 1
+
+    grd_bins = np.full((lat_space.shape[0], lon_space.shape[0]), 0)
+    grd_bins_keys = [[[] for i in range(lon_space.shape[0])] for j in range(lat_space.shape[0])]
+
+    for key in keys:
+            tup = icing_dict.get(key)
+            lat = tup[0]
+            lon = tup[1]
+
+            lon_idx = np.searchsorted(lon_space, lon)
+            lat_idx = np.searchsorted(lat_space, lat)
+
+            if lon_idx < 0 or lon_idx > grd_x_hi:
+                continue
+            if lat_idx < 0 or lat_idx > grd_y_hi:
+                continue
+
+            grd_bins[lat_idx, lon_idx] += 1
+            grd_bins_keys[lat_idx][lon_idx].append(key)
+
+    return grd_bins, grd_bins_keys
+
+
+def process_boeing(boeing_dct, pirep_dct, threshold=3000):
+
+    boeing_times = list(boeing_dct.keys())
+    pirep_times = np.array(list(pirep_dct.keys()))
+
+    pt_s = []
+    bt_s = []
+    bi_s = []
+    for k, bt in enumerate(boeing_times):
+        idx_s, v_s = get_indexes_within_threshold(pirep_times, bt, threshold=threshold)
+        if len(idx_s) > 0:
+            bt_s.append(bt)
+            bi_s.append(k)
+            pt_s.append(v_s[0])
+
+    boeing_times = np.array(boeing_times)
+
+    sub_pirep_dct = {}
+    sub_boeing_dct = {}
+    for key in pt_s:
+        sub_pirep_dct[key] = pirep_dct.get(key)
+    for key in bt_s:
+        sub_boeing_dct[key] = boeing_dct.get(key)
+
+    grd_bins, _ = spatial_filter(sub_pirep_dct)
+    grd_bins_boeing, key_bins = spatial_filter2(sub_boeing_dct)
+
+    grd_bins = np.where(grd_bins > 0, 1, grd_bins)
+    grd_bins_boeing = np.where(grd_bins_boeing > 0, 1, grd_bins_boeing)
+
+    ovrlp_grd_bins = grd_bins + grd_bins_boeing
+    print(np.sum(ovrlp_grd_bins == 2))
+
+    ovlp_keys = []
+    for j in range(lat_space.shape[0]):
+        for i in range(lon_space.shape[0]):
+            if ovrlp_grd_bins[j, i] == 2:
+                keys = key_bins[j][i]
+                nkeys = len(keys)
+                for k in range(nkeys):
+                    ovlp_keys.append(keys[k])
+    set_a = set(ovlp_keys)
+    set_b = set(boeing_times)
+    print(len(set_a), len(set_b))
+    set_b.difference_update(set_a)
+    print(len(set_b))
 
 
 # dt_str_0: start datetime string in format YYYY-MM-DD_HH:MM (default)
-- 
GitLab