diff --git a/modules/amv/intercompare.py b/modules/amv/intercompare.py index 96bed187a38ea51f62c3725dac51c77904751566..0cb3ab5c02130240fd584429cf3174d9321f82d9 100644 --- a/modules/amv/intercompare.py +++ b/modules/amv/intercompare.py @@ -973,6 +973,7 @@ def best_fit(amv_spd, amv_dir, amv_prs, amv_lat, amv_lon, fcst_spd, fcst_dir, fc History: 10/2012 - Steve Wanzong - Created in Fortran 10/2013 - Sharon Nebuda - rewritten for python + 10/2021 - Tom Rink - adapted from previous version to leverage more of NumPy """ undef = -9999.0 @@ -1001,7 +1002,7 @@ def best_fit(amv_spd, amv_dir, amv_prs, amv_lat, amv_lon, fcst_spd, fcst_dir, fc print('AMV location lat,lon,prs ({0},{1},{2}) failed to find fcst prs around AMV'.format(amv_lat, amv_lon, amv_prs)) return bf_data -# Diagnostic field: Find the model minimum speed and maximum speed within PressDiff of the AMV. +# Diagnostic field: Find the forecast/model minimum speed and maximum speed within PressDiff of the AMV. if verbose: SatwindMinSpeed = min(fcst_spd[kk]) SatwindMaxSpeed = max(fcst_spd[kk]) @@ -1013,7 +1014,7 @@ def best_fit(amv_spd, amv_dir, amv_prs, amv_lat, amv_lon, fcst_spd, fcst_dir, fc fcst_uwind = -fcst_spd * np.sin(dr*fcst_dir) fcst_vwind = -fcst_spd * np.cos(dr*fcst_dir) -# Calculate the vector difference between the AMV and model background at all levels. +# Calculate the vector difference between the AMV and forecast/model background at all levels. VecDiff = np.sqrt((amv_uwind - fcst_uwind) ** 2 + (amv_vwind - fcst_vwind) ** 2) # Find the model level of best-fit pressure, from the minimum vector difference.