diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index 018b2bf4411cb6f2042c5c085bcbbd3b845f0562..ddee109c313ba90346b6b90060a5157393a62c5a 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -47,11 +47,11 @@ f.close() mean_std_dct.update(mean_std_dct_l1b) mean_std_dct.update(mean_std_dct_l2) -#params = ['temp_11_0um_nom', 'temp_12_0um_nom', 'refl_0_65um_nom', 'cloud_fraction'] -#data_params = ['temp_11_0um_nom', 'temp_12_0um_nom', 'refl_0_65um_nom'] -params = ['temp_11_0um_nom', 'temp_12_0um_nom', 'refl_0_65um_nom', 'cld_opd_dcomp'] +# params = ['temp_11_0um_nom', 'temp_12_0um_nom', 'refl_0_65um_nom', 'cloud_fraction'] +# data_params = ['temp_11_0um_nom', 'temp_12_0um_nom', 'refl_0_65um_nom'] +params = ['temp_11_0um_nom', 'temp_12_0um_nom', 'refl_0_65um_nom', 'cloud_fraction'] data_params = ['temp_11_0um_nom'] -label_params = ['cld_opd_dcomp'] +label_params = ['cloud_fraction'] DO_ZERO_OUT = False @@ -67,8 +67,8 @@ x_64 = np.arange(64) y_64 = np.arange(64) x_134_2 = x_134[3:131:2] y_134_2 = y_134[3:131:2] -#x_134_2 = x_134[2:133:2] -#y_134_2 = y_134[2:133:2] +# x_134_2 = x_134[2:133:2] +# y_134_2 = y_134[2:133:2] t = np.arange(0, 64, 0.5) s = np.arange(0, 64, 0.5) @@ -418,7 +418,7 @@ class SRCNN: self.loss = tf.keras.losses.MeanSquaredError() # Regression # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) - initial_learning_rate = 0.001 + initial_learning_rate = 0.002 decay_rate = 0.95 steps_per_epoch = int(self.num_data_samples/BATCH_SIZE) # one epoch decay_steps = int(steps_per_epoch)