From c007a8b29f26650801f13175ea81df70568edf80 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Fri, 10 May 2024 10:39:00 -0500 Subject: [PATCH] snapshot... --- modules/icing/util.py | 201 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 201 insertions(+) diff --git a/modules/icing/util.py b/modules/icing/util.py index 86b6feea..06fcc7cf 100644 --- a/modules/icing/util.py +++ b/modules/icing/util.py @@ -11,6 +11,7 @@ from aeolus.datasource import CLAVRx, CLAVRx_VIIRS, CLAVRx_H08, CLAVRx_H09 import h5py import datetime from netCDF4 import Dataset +import joblib import tensorflow as tf import os # from scipy.signal import medfilt2d @@ -332,6 +333,59 @@ def prepare_evaluate(h5f, name_list, satellite='GOES16', domain='FD', res_fac=1, return grd_dct_n, solzen, satzen, ll, cc +def prepare_evaluate1x1(h5f, name_list, satellite='GOES16', domain='FD', res_fac=1, offset=0): + w_x = 1 + w_y = 1 + i_0 = 0 + j_0 = 0 + s_x = w_x // res_fac + s_y = w_y // res_fac + + geos, xlen, xmin, xmax, ylen, ymin, ymax = get_cartopy_crs(satellite, domain) + if satellite == 'H08': + xlen = taiwan_lenx + ylen = taiwan_leny + i_0 = taiwan_i0 + j_0 = taiwan_j0 + elif satellite == 'H09': + xlen = taiwan_lenx + ylen = taiwan_leny + i_0 = taiwan_i0 + j_0 = taiwan_j0 + + n_x = (xlen // s_x) + n_y = (ylen // s_y) + + ll = [(offset+j_0) + j*s_y for j in range(n_y)] + cc = [(offset+i_0) + i*s_x for i in range(n_x)] + + grd_dct_n = {name: [] for name in name_list} + + cnt_a = 0 + for ds_name in name_list: + fill_value, fill_value_name = get_fill_attrs(ds_name) + gvals = get_grid_values(h5f, ds_name, j_0, i_0, None, num_j=ylen, num_i=xlen, fill_value_name=fill_value_name, fill_value=fill_value) + print(gvals.shape) + gvals = np.expand_dims(gvals, axis=0) + print(gvals.shape) + print('--------------------') + if gvals is not None: + grd_dct_n[ds_name] = gvals + cnt_a += 1 + + if cnt_a > 0 and cnt_a != len(name_list): + raise GenericException('weirdness') + + solzen = get_grid_values(h5f, 'solar_zenith_angle', j_0, i_0, None, num_j=ylen, num_i=xlen) + satzen = get_grid_values(h5f, 'sensor_zenith_angle', j_0, i_0, None, num_j=ylen, num_i=xlen) + cldmsk = get_grid_values(h5f, 'cloud_mask', j_0, i_0, None, num_j=ylen, num_i=xlen) + solzen = solzen[0:n_y*s_y:s_y, 0:n_x*s_x:s_x] + satzen = satzen[0:n_y*s_y:s_y, 0:n_x*s_x:s_x] + cldmsk = cldmsk[0:n_y*s_y:s_y, 0:n_x*s_x:s_x] + + return grd_dct_n, solzen, satzen, cldmsk, ll, cc + + flt_level_ranges_str = {k: None for k in range(6)} flt_level_ranges_str[0] = '0_2000' flt_level_ranges_str[1] = '2000_4000' @@ -1422,3 +1476,150 @@ def run_icing_predict_image_fcn(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', ou print('Done: ', clvrx_str_time) h5f.close() + +def run_icing_predict_image_1x1(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', output_dir=homedir, + day_model_path=model_path_day, night_model_path=model_path_night, + prob_thresh=0.5, satellite='GOES16', domain='CONUS', day_night='AUTO', + l1b_andor_l2='BOTH', use_flight_altitude=True, use_max_cth_level=False, + extent=[-105, -70, 15, 50], + pirep_file='/Users/tomrink/data/pirep/pireps_202109200000_202109232359.csv', + obs_lons=None, obs_lats=None, obs_times=None, obs_alt=None, flight_level=None, obs_intensity=None): + + import deeplearning.icing_fcn as icing_fcn + # model_module = icing_fcn + # + # if day_model_path is not None: + # day_model = model_module.load_model(day_model_path, day_night='DAY', l1b_andor_l2=l1b_andor_l2, + # use_flight_altitude=use_flight_altitude) + # if night_model_path is not None: + # night_model = model_module.load_model(night_model_path, day_night='NIGHT', l1b_andor_l2=l1b_andor_l2, + # use_flight_altitude=use_flight_altitude) + + # load parameter stats and model from disk + stdSclr = joblib.load('/home/rink/stdSclr_4.pkl') + model = joblib.load('/home/rink/icing_gbm.pkl') + + if use_flight_altitude is True: + flight_levels = [0, 1, 2, 3, 4] + if use_max_cth_level: + flight_levels = [-1] + else: + flight_levels = [0] + + if pirep_file is not None: + ice_dict, no_ice_dict, neg_ice_dict = setup(pirep_file) + + alt_lo, alt_hi = 0.0, 15000.0 + if flight_level is not None: + alt_lo, alt_hi = flt_level_ranges[flight_level] + + # day_train_params, _, _ = get_training_parameters(day_night='DAY', l1b_andor_l2=l1b_andor_l2) + # nght_train_params, _, _ = get_training_parameters(day_night='NIGHT', l1b_andor_l2=l1b_andor_l2) + # + # if day_night == 'AUTO': + # train_params = list(set(day_train_params + nght_train_params)) + # elif day_night == 'DAY': + # train_params = day_train_params + # elif day_night == 'NIGHT': + # train_params = nght_train_params + train_params = ['cld_temp_acha', 'supercooled_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp'] + + if satellite == 'H08': + clvrx_ds = CLAVRx_H08(clvrx_dir) + elif satellite == 'H09': + clvrx_ds = CLAVRx_H09(clvrx_dir) + else: + clvrx_ds = CLAVRx(clvrx_dir) + clvrx_files = clvrx_ds.flist + + for fidx, fname in enumerate(clvrx_files): + h5f = h5py.File(fname, 'r') + dto = clvrx_ds.get_datetime(fname) + ts = dto.timestamp() + clvrx_str_time = dto.strftime('%Y-%m-%d_%H:%M') + + dto, _ = get_time_tuple_utc(ts) + dto_0 = dto - datetime.timedelta(minutes=30) + dto_1 = dto + datetime.timedelta(minutes=30) + ts_0 = dto_0.timestamp() + ts_1 = dto_1.timestamp() + + if pirep_file is not None: + _, keep_lons, keep_lats, _ = time_filter_3(ice_dict, ts_0, ts_1, alt_lo, alt_hi) + elif obs_times is not None: + keep = np.logical_and(obs_times >= ts_0, obs_times < ts_1) + keep = np.where(keep, np.logical_and(obs_alt >= alt_lo, obs_alt < alt_hi), False) + keep_lons = obs_lons[keep] + keep_lats = obs_lats[keep] + else: + keep_lons = None + keep_lats = None + + data_dct, solzen, satzen, cldmsk, ll, cc = prepare_evaluate1x1(h5f, name_list=train_params, satellite=satellite, domain=domain, offset=8) + num_elems = len(cc) + num_lines = len(ll) + + day_idxs = solzen < 80.0 + day_idxs = day_idxs.flatten() + num_day_tiles = np.sum(day_idxs) + + nght_idxs = solzen > 100.0 + nght_idxs = nght_idxs.flatten() + num_nght_tiles = np.sum(nght_idxs) + + # initialize output arrays + probs_2d_dct = {flvl: None for flvl in flight_levels} + preds_2d_dct = {flvl: None for flvl in flight_levels} + for flvl in flight_levels: + fd_preds = np.zeros(num_lines * num_elems, dtype=np.int8) + fd_preds[:] = -1 + fd_probs = np.zeros(num_lines * num_elems, dtype=np.float32) + fd_probs[:] = -1.0 + preds_2d_dct[flvl] = fd_preds + probs_2d_dct[flvl] = fd_probs + + if (day_night == 'AUTO' or day_night == 'DAY') and num_day_tiles > 0: + preds_day_dct, probs_day_dct = icing_fcn.run_evaluate_static_2(day_model, data_dct, 1, + prob_thresh=prob_thresh, + flight_levels=flight_levels) + for flvl in flight_levels: + preds = preds_day_dct[flvl].flatten() + probs = probs_day_dct[flvl].flatten() + fd_preds = preds_2d_dct[flvl] + fd_probs = probs_2d_dct[flvl] + fd_preds[day_idxs] = preds[day_idxs] + fd_probs[day_idxs] = probs[day_idxs] + + if (day_night == 'AUTO' or day_night == 'NIGHT') and num_nght_tiles > 0: + preds_nght_dct, probs_nght_dct = icing_fcn.run_evaluate_static_2(night_model, data_dct, 1, + prob_thresh=prob_thresh, + flight_levels=flight_levels) + for flvl in flight_levels: + preds = preds_nght_dct[flvl].flatten() + probs = probs_nght_dct[flvl].flatten() + fd_preds = preds_2d_dct[flvl] + fd_probs = probs_2d_dct[flvl] + fd_preds[nght_idxs] = preds[nght_idxs] + fd_probs[nght_idxs] = probs[nght_idxs] + + for flvl in flight_levels: + fd_preds = preds_2d_dct[flvl] + fd_probs = probs_2d_dct[flvl] + preds_2d_dct[flvl] = fd_preds.reshape((num_lines, num_elems)) + probs_2d_dct[flvl] = fd_probs.reshape((num_lines, num_elems)) + + prob_s = [] + for flvl in flight_levels: + probs = probs_2d_dct[flvl] + prob_s.append(probs) + prob_s = np.stack(prob_s, axis=-1) + max_prob = np.max(prob_s, axis=2) + max_prob = np.where(max_prob < 0.5, np.nan, max_prob) + + make_icing_image(h5f, max_prob, None, None, clvrx_str_time, satellite, domain, + ice_lons_vld=keep_lons, ice_lats_vld=keep_lats, extent=extent) + + print('Done: ', clvrx_str_time) + h5f.close() + + -- GitLab