diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index 24a6fc44cf5b4e90d4b73b032474e44897a0f6d5..57ff96bb85034c331e2b1b5f64baa51791a453c8 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -49,9 +49,9 @@ mean_std_dct.update(mean_std_dct_l2) #params = ['temp_11_0um_nom', 'temp_12_0um_nom', 'refl_0_65um_nom', 'cloud_fraction'] #data_params = ['temp_11_0um_nom', 'temp_12_0um_nom', 'refl_0_65um_nom'] -params = ['temp_11_0um_nom', 'temp_12_0um_nom', 'refl_0_65um_nom', 'cloud_fraction'] +params = ['temp_11_0um_nom', 'temp_12_0um_nom', 'refl_0_65um_nom', 'cld_opd_dcomp'] data_params = ['temp_11_0um_nom'] -label_params = ['cloud_fraction'] +label_params = ['cld_opd_dcomp'] DO_ZERO_OUT = False @@ -239,6 +239,8 @@ class SRCNN: tmp = input_data[:, label_idx, 3:131:2, 3:131:2] tmp = np.where(np.isnan(tmp), 0, tmp) tmp = resample_2d_linear(x_64, y_64, tmp, t, s) + if label_param != 'cloud_fraction': + tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) data_norm.append(tmp) # --------- data = np.stack(data_norm, axis=3)