From be2fe53aaeb93adfda6ce5ba25133c8e7b70be48 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Mon, 21 Nov 2022 14:34:40 -0600 Subject: [PATCH] minor... --- modules/deeplearning/icing_fcn.py | 18 +++++++++++++++++- 1 file changed, 17 insertions(+), 1 deletion(-) diff --git a/modules/deeplearning/icing_fcn.py b/modules/deeplearning/icing_fcn.py index ccceb7de..0da9aa42 100644 --- a/modules/deeplearning/icing_fcn.py +++ b/modules/deeplearning/icing_fcn.py @@ -543,8 +543,22 @@ class IcingIntensityFCN: h5f = self.h5f_l1b_tst else: h5f = self.h5f_l2_tst + time = h5f['time'] + flt_alt = h5f['flight_altitude'][:] tst_idxs = np.arange(time.shape[0]) + + if self.flight_level == 0: + tst_idxs = tst_idxs[np.logical_and(flt_alt >= 0, flt_alt < 2000)] + elif self.flight_level == 1: + tst_idxs = tst_idxs[np.logical_and(flt_alt >= 2000, flt_alt < 4000)] + elif self.flight_level == 2: + tst_idxs = tst_idxs[np.logical_and(flt_alt >= 4000, flt_alt < 6000)] + elif self.flight_level == 3: + tst_idxs = tst_idxs[np.logical_and(flt_alt >= 6000, flt_alt < 8000)] + elif self.flight_level == 4: + tst_idxs = tst_idxs[np.logical_and(flt_alt >= 8000, flt_alt < 15000)] + self.num_data_samples = len(tst_idxs) self.get_test_dataset(tst_idxs) @@ -1081,7 +1095,8 @@ class IcingIntensityFCN: self.do_evaluate(ckpt_dir) -def run_restore_static(filename_l1b, filename_l2, ckpt_dir_s_path, day_night='DAY', l1b_or_l2='both', use_flight_altitude=False): +def run_restore_static(filename_l1b, filename_l2, ckpt_dir_s_path, day_night='DAY', l1b_or_l2='both', + use_flight_altitude=False, flight_level=0): ckpt_dir_s = os.listdir(ckpt_dir_s_path) cm_s = [] prob_s = [] @@ -1092,6 +1107,7 @@ def run_restore_static(filename_l1b, filename_l2, ckpt_dir_s_path, day_night='DA if not os.path.isdir(ckpt_dir): continue nn = IcingIntensityFCN(day_night=day_night, l1b_or_l2=l1b_or_l2, use_flight_altitude=use_flight_altitude) + nn.flight_level = flight_level nn.run_restore(filename_l1b, filename_l2, ckpt_dir) cm_s.append(tf.math.confusion_matrix(nn.test_labels.flatten(), nn.test_preds.flatten())) prob_s.append(nn.test_probs.flatten()) -- GitLab