From bd773b48c15c73da214d3fcfb39184a8db59db56 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Fri, 1 Apr 2022 12:50:18 -0500 Subject: [PATCH] minor... --- modules/icing/pirep_goes.py | 72 +++++++++++++++++++++++++++---------- 1 file changed, 54 insertions(+), 18 deletions(-) diff --git a/modules/icing/pirep_goes.py b/modules/icing/pirep_goes.py index de8e00a3..0ece9432 100644 --- a/modules/icing/pirep_goes.py +++ b/modules/icing/pirep_goes.py @@ -1717,26 +1717,62 @@ def split_data(times): [get_timestamp('2022-01-01_00:00'), get_timestamp('2022-01-07_23:59')], [get_timestamp('2022-03-01_00:00'), get_timestamp('2022-03-07_23:59')]] - test_time_idxs = [] + keep_out = 10800 # 3 hrs + + vld_time_idxs = [] + for t_rng in time_ranges: + t_rng[0] -= keep_out + t_rng[1] += keep_out + tidxs = np.searchsorted(times, t_rng) + vld_time_idxs.append(np.arange(tidxs[0], tidxs[1], 1)) + vld_time_idxs = np.concatenate(vld_time_idxs, axis=None) + # train_time_idxs = time_idxs[np.in1d(time_idxs, vld_time_idxs, invert=True)] + + # Save this just in case. + # # Keep out + # out_idxs = [] + # for k, t_rng in enumerate(time_ranges): + # t_a = time_ranges[k][0] + # t_b = time_ranges[k][1] + # tidxs = np.searchsorted(times, [t_a - 10800, t_a]) + # out_idxs.append(np.arange(tidxs[0], tidxs[1], 1)) + # tidxs = np.searchsorted(times, [t_b, t_b + 10800]) + # out_idxs.append(np.arange(tidxs[0], tidxs[1], 1)) + # out_idxs = np.concatenate(out_idxs, axis=None) + # train_time_idxs = train_time_idxs[np.in1d(train_time_idxs, out_idxs, invert=True)] + + time_ranges = [[get_timestamp('2018-02-01_00:00'), get_timestamp('2018-02-05_23:59')], + [get_timestamp('2018-04-01_00:00'), get_timestamp('2018-04-05_23:59')], + [get_timestamp('2018-06-01_00:00'), get_timestamp('2018-06-05_23:59')], + [get_timestamp('2018-08-01_00:00'), get_timestamp('2018-08-05_23:59')], + [get_timestamp('2018-10-01_00:00'), get_timestamp('2018-10-05_23:59')], + [get_timestamp('2018-12-01_00:00'), get_timestamp('2018-12-05_23:59')], + [get_timestamp('2019-02-01_00:00'), get_timestamp('2019-02-05_23:59')], + [get_timestamp('2019-04-01_00:00'), get_timestamp('2019-04-05_23:59')], + [get_timestamp('2019-06-01_00:00'), get_timestamp('2019-06-05_23:59')], + [get_timestamp('2019-08-01_00:00'), get_timestamp('2019-08-05_23:59')], + [get_timestamp('2019-10-01_00:00'), get_timestamp('2019-10-05_23:59')], + [get_timestamp('2019-12-01_00:00'), get_timestamp('2019-12-05_23:59')], + + [get_timestamp('2021-10-05_00:00'), get_timestamp('2021-10-10_23:59')], + [get_timestamp('2021-12-01_00:00'), get_timestamp('2021-12-05_23:59')], + [get_timestamp('2022-02-01_00:00'), get_timestamp('2022-02-05_23:59')], + [get_timestamp('2022-03-25_00:00'), get_timestamp('2022-03-30_23:59')]] + + tst_time_idxs = [] for t_rng in time_ranges: + t_rng[0] -= keep_out + t_rng[1] += keep_out tidxs = np.searchsorted(times, t_rng) - test_time_idxs.append(np.arange(tidxs[0], tidxs[1], 1)) - test_time_idxs = np.concatenate(test_time_idxs, axis=None) - train_time_idxs = time_idxs[np.in1d(time_idxs, test_time_idxs, invert=True)] - - # Keep out - out_idxs = [] - for k, t_rng in enumerate(time_ranges): - t_a = time_ranges[k][0] - t_b = time_ranges[k][1] - tidxs = np.searchsorted(times, [t_a - 10800, t_a]) - out_idxs.append(np.arange(tidxs[0], tidxs[1], 1)) - tidxs = np.searchsorted(times, [t_b, t_b + 10800]) - out_idxs.append(np.arange(tidxs[0], tidxs[1], 1)) - out_idxs = np.concatenate(out_idxs, axis=None) - train_time_idxs = train_time_idxs[np.in1d(train_time_idxs, out_idxs, invert=True)] - - return train_time_idxs, test_time_idxs + tst_time_idxs.append(np.arange(tidxs[0], tidxs[1], 1)) + tst_time_idxs = np.concatenate(tst_time_idxs, axis=None) + + vld_tst_time_idxs = np.concatenate([vld_time_idxs, tst_time_idxs]) + vld_tst_time_idxs = np.sort(vld_tst_time_idxs) + + train_time_idxs = time_idxs[np.in1d(time_idxs, vld_tst_time_idxs, invert=True)] + + return train_time_idxs, vld_time_idxs, tst_time_idxs def normalize(data, param, mean_std_dict, add_noise=False, noise_scale=1.0, seed=None): -- GitLab