diff --git a/modules/deeplearning/cloud_opd_srcnn_abi.py b/modules/deeplearning/cloud_opd_srcnn_abi.py index 108921d76030e15ddae4a93118881acb88d348d3..3b59be2aa392918fb34d013c142a9e9d3a73f46f 100644 --- a/modules/deeplearning/cloud_opd_srcnn_abi.py +++ b/modules/deeplearning/cloud_opd_srcnn_abi.py @@ -730,8 +730,7 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): cld_opd = cld_opd[nn.slc_y_m, nn.slc_x_m] cld_opd = np.expand_dims(cld_opd, axis=0) cld_opd = nn.upsample(cld_opd) - # cld_opd = normalize(cld_opd, label_param, mean_std_dct) - cld_opd = scale(cld_opd, label_param, mean_std_dct) + cld_opd = normalize(cld_opd, label_param, mean_std_dct) print('OPD done') data = np.stack([bt, refl, cld_opd], axis=3) @@ -739,7 +738,6 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): h5f.close() cld_opd_sres = nn.run_evaluate(data, ckpt_dir) - # cld_opd_sres = denormalize(cld_opd_sres, label_param, mean_std_dct) cld_opd_sres = descale(cld_opd_sres, label_param, mean_std_dct) _, ylen, xlen, _ = cld_opd_sres.shape print('OUT: ', ylen, xlen) @@ -754,8 +752,7 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): cld_opd_out[0:(ylen+2*border), 0:(xlen+2*border)] = cld_opd[0, :, :] refl_out = denormalize(refl_out, 'refl_0_65um_nom', mean_std_dct) - # cld_opd_out = denormalize(cld_opd_out, label_param, mean_std_dct) - cld_opd_out = descale(cld_opd_out, label_param, mean_std_dct) + cld_opd_out = denormalize(cld_opd_out, label_param, mean_std_dct) if out_file is not None: np.save(out_file, (cld_opd_sres_out, refl_out, cld_opd_out, cld_opd_hres))