diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index 60d89f0dd60c5368be55590c7ca0a1db6dc33163..bb3bfbf3e805a3dfcfb861b2d723d54181c5d009 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -73,13 +73,23 @@ t = np.arange(0, 64, 0.5) s = np.arange(0, 64, 0.5) -def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.relu, padding='SAME', kernel_initializer='he_uniform', scale=None): +def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.relu, padding='SAME', + kernel_initializer='he_uniform', scale=None, + do_drop_out=False, drop_rate=0.5, do_batch_norm=False): with tf.name_scope(block_name): skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding=padding, kernel_initializer=kernel_initializer, activation=activation)(conv) skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding=padding, activation=None)(skip) + if scale is not None: skip = tf.keras.layers.Lambda(lambda x: x * scale)(skip) + + if do_drop_out: + skip = tf.keras.layers.Dropout(drop_rate)(skip) + + if do_batch_norm: + skip = tf.keras.layers.BatchNormalization()(skip) + conv = conv + skip print(block_name+':', conv.shape)