diff --git a/modules/deeplearning/cloud_opd_srcnn_viirs.py b/modules/deeplearning/cloud_opd_srcnn_viirs.py index e1ba77f7d6602101659f305ad8721f8a8fd200e5..cdca7e9d5e703357f340b60f9b85da43c82e67e8 100644 --- a/modules/deeplearning/cloud_opd_srcnn_viirs.py +++ b/modules/deeplearning/cloud_opd_srcnn_viirs.py @@ -732,20 +732,20 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): bt = smooth_2d(bt) bt = normalize(bt, 'temp_11_0um_nom', mean_std_dct) - # cld_opd = np.where(np.isnan(cld_opd), 0, cld_opd) - # cld_opd = cld_opd[nn.slc_y_2, nn.slc_x_2] - # cld_opd = np.expand_dims(cld_opd, axis=0) - # cld_opd = nn.upsample(cld_opd) - # cld_opd = smooth_2d(cld_opd) - # cld_opd = normalize(cld_opd, label_param, mean_std_dct) - - cld_opd = np.where(np.isnan(cld_opd_orig), 0, cld_opd_orig) - cld_opd = cld_opd[nn.slc_y_m, nn.slc_x_m] + cld_opd = np.where(np.isnan(cld_opd), 0, cld_opd) + cld_opd = cld_opd[nn.slc_y_2, nn.slc_x_2] cld_opd = np.expand_dims(cld_opd, axis=0) cld_opd = nn.upsample(cld_opd) cld_opd = smooth_2d(cld_opd) cld_opd = normalize(cld_opd, label_param, mean_std_dct) + # cld_opd = np.where(np.isnan(cld_opd_orig), 0, cld_opd_orig) + # cld_opd = cld_opd[nn.slc_y_m, nn.slc_x_m] + # cld_opd = np.expand_dims(cld_opd, axis=0) + # cld_opd = nn.upsample(cld_opd) + # cld_opd = smooth_2d(cld_opd) + # cld_opd = normalize(cld_opd, label_param, mean_std_dct) + data = np.stack([bt, refl, cld_opd], axis=3) print('input data shape: ', data.shape)