From b5543be6a48593854fb4b32b79472bc9547a68b6 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Thu, 11 Feb 2021 12:22:47 -0600 Subject: [PATCH] add option to, or not, copy from /arcdata to local --- modules/deeplearning/amv_raob.py | 9 +++++++++ 1 file changed, 9 insertions(+) diff --git a/modules/deeplearning/amv_raob.py b/modules/deeplearning/amv_raob.py index 6317bdcb..52c16a22 100644 --- a/modules/deeplearning/amv_raob.py +++ b/modules/deeplearning/amv_raob.py @@ -740,6 +740,8 @@ def get_images(lons, lats, timestamp, channel_list, half_width, step, do_norm=Fa return None, None, None, None # copy from archive to local drive + t0 = datetime.datetime.now().timestamp() + local_path = fC if COPY_GOES: local_path = goes_cache_dir + '/' + os.path.split(fC)[1] if not os.path.exists(local_path): @@ -752,6 +754,8 @@ def get_images(lons, lats, timestamp, channel_list, half_width, step, do_norm=Fa except Exception as exc: print(exc) return None, None, None, None + t1 = datetime.datetime.now().timestamp() + print((t1-t0)*1000) bt_or_refl = None if pug_l1b_c.bt_or_refl == 'bt': @@ -761,6 +765,7 @@ def get_images(lons, lats, timestamp, channel_list, half_width, step, do_norm=Fa if TRIPLET or CONV3D: # copy from archive to local drive + local_path_l = fL if COPY_GOES: local_path_l = goes_cache_dir + '/' + os.path.split(fL)[1] if not os.path.exists(local_path_l): @@ -780,6 +785,7 @@ def get_images(lons, lats, timestamp, channel_list, half_width, step, do_norm=Fa bt_or_refl_l = pug_l1b_l.refl # copy from archive to local drive + local_path_r = fR if COPY_GOES: local_path_r = goes_cache_dir + '/' + os.path.split(fR)[1] if not os.path.exists(local_path_r): @@ -798,6 +804,7 @@ def get_images(lons, lats, timestamp, channel_list, half_width, step, do_norm=Fa elif pug_l1b_r.bt_or_refl == 'refl': bt_or_refl_r = pug_l1b_r.refl + t0 = datetime.datetime.now().timestamp() if daynight != 'ANY': if step[ch_idx] == 1: if geoloc_2km is None: @@ -881,6 +888,8 @@ def get_images(lons, lats, timestamp, channel_list, half_width, step, do_norm=Fa if TRIPLET or CONV3D: subprocess.call(['rm', local_path_l]) subprocess.call(['rm', local_path_r]) + t1 = datetime.datetime.now().timestamp() + print((t1-t0)*1000) return np.array(data), np.array(data_l), np.array(data_r), np.array(idxs) -- GitLab