diff --git a/modules/deeplearning/espcn.py b/modules/deeplearning/espcn.py index 773d2108dd4729cb3de143a87be63e402ef7819a..764af4b1c7fbcc70280843ced70ac9a9276a6c3d 100644 --- a/modules/deeplearning/espcn.py +++ b/modules/deeplearning/espcn.py @@ -211,7 +211,7 @@ class ESPCN: self.n_chans = 1 self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) - self.X_img = tf.keras.Input(shape=(36, 36, self.n_chans)) + # self.X_img = tf.keras.Input(shape=(36, 36, self.n_chans)) # self.X_img = tf.keras.Input(shape=(32, 32, self.n_chans)) self.inputs.append(self.X_img) @@ -236,13 +236,14 @@ class ESPCN: label = np.concatenate(label_s) # label = label[:, label_idx, :, :] - label = label[:, label_idx, 4:68, 4:68] + label = label[:, label_idx, 3:67, 3:67] label = np.expand_dims(label, axis=3) - data = data[:, data_idx, :, :] + # data = data[:, data_idx, :, :] + data = data[:, data_idx, 3:67, 3:67] data = np.expand_dims(data, axis=3) - # data = tf.image.resize(data, (32, 32)).numpy() - data = tf.image.resize(data, (36, 36)).numpy() + data = tf.image.resize(data, (32, 32)).numpy() + # data = tf.image.resize(data, (36, 36)).numpy() data = data.astype(np.float32) label = label.astype(np.float32) @@ -383,8 +384,8 @@ class ESPCN: input_2d = self.inputs[0] print('input: ', input_2d.shape) - conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding='VALID', activation=None)(input_2d) - # conv = input_2d + # conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding='VALID', activation=None)(input_2d) + conv = input_2d print('input: ', conv.shape) skip = conv @@ -818,6 +819,7 @@ def prepare(param_idx=1, filename='/Users/tomrink/data_valid_40.npy'): nda = np.load(filename) nda = nda[:, param_idx, :, :] nda = np.expand_dims(nda, axis=3) + # nda_lr = tf.image.resize(nda, (36, 36)).numpy() nda_lr = tf.image.resize(nda, (32, 32)).numpy() return nda_lr