From b53270b0cc9e8f9106d28a6ff74b63fd05ab3dde Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Thu, 12 Nov 2020 15:29:35 -0600 Subject: [PATCH] snapshot... --- modules/aeolus/aeolus_amv.py | 16 ++++++++++------ 1 file changed, 10 insertions(+), 6 deletions(-) diff --git a/modules/aeolus/aeolus_amv.py b/modules/aeolus/aeolus_amv.py index 1bd33a5e..4803a124 100644 --- a/modules/aeolus/aeolus_amv.py +++ b/modules/aeolus/aeolus_amv.py @@ -707,10 +707,11 @@ def analyze(prof_da, amvs_da, prof_locs_da, dist_threshold=5.0): one_lyr_amvs = one_lyr_amvs[close] one_lyr_profs = one_lyr_profs[close] - print('number of one layer profs with at least one AMV within 5km: ', one_lyr_profs.shape[0]) + num_one_lyr_profs = one_lyr_profs.shape[0] + print('number of one layer profs with at least one AMV within threshold: ', num_one_lyr_profs) cnt = 0 - for k in range(one_lyr_profs.shape[0]): + for k in range(num_one_lyr_profs): dst = one_lyr_amvs[k, :, ].sel(num_params='dist_to_prof') b = np.logical_and(dst > 0.0, dst < dist_threshold) h_3d = one_lyr_amvs[k, :].sel(num_params='H_3D') @@ -721,7 +722,7 @@ def analyze(prof_da, amvs_da, prof_locs_da, dist_threshold=5.0): in_lyr = np.logical_and(h_3d > one_lyr_profs[k, 0, 0], h_3d < one_lyr_profs[k, 0, 1]) cnt += np.sum(in_lyr) - print(cnt) + print('fraction hits single cloud layer: ', cnt/num_one_lyr_profs) # Do calculations for single and multi-layer combined hgt_vld = amvs_da.sel(num_params='H_3D') > 0 @@ -741,10 +742,13 @@ def analyze(prof_da, amvs_da, prof_locs_da, dist_threshold=5.0): amvs_da = amvs_da[close] prof_da = prof_da[close] prof_locs_da = prof_locs_da[close] - print('number of profs with at least one AMV within 5km: ', prof_da.shape[0]) + num_profs = prof_da.shape[0] + print('number of profs with at least one AMV within 5km: ', num_profs) cnt = 0 - for k in range(prof_da.shape[0]): + prof_bot = prof_da.sel(num_params='layer_bot') + prof_top = prof_da.sel(num_params='layer_top') + for k in range(num_profs): dst = amvs_da[k, :, ].sel(num_params='dist_to_prof') b = np.logical_and(dst > 0.0, dst < dist_threshold) h_3d = amvs_da[k, :].sel(num_params='H_3D') @@ -757,5 +761,5 @@ def analyze(prof_da, amvs_da, prof_locs_da, dist_threshold=5.0): in_lyr = np.logical_and(h_3d > prof_da[k, j, 0], h_3d < prof_da[k, j, 1]) cnt += np.sum(in_lyr) - print(cnt) + print('fraction hits multi layer: ', cnt/num_profs) return one_lyr_profs, one_lyr_amvs -- GitLab