From b49a8160dfeadc39b5208211a383e37792cecabb Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Mon, 23 Oct 2023 14:36:51 -0500 Subject: [PATCH] snapshot... --- modules/deeplearning/icing_fcn.py | 44 +++++++++++++++---------------- 1 file changed, 22 insertions(+), 22 deletions(-) diff --git a/modules/deeplearning/icing_fcn.py b/modules/deeplearning/icing_fcn.py index 015dd047..f70d69d7 100644 --- a/modules/deeplearning/icing_fcn.py +++ b/modules/deeplearning/icing_fcn.py @@ -316,26 +316,26 @@ class IcingIntensityFCN: label = np.where(np.invert(np.logical_or(label == 0, label == 1)), 2, label) label = label.reshape((label.shape[0], 1)) - if is_training and DO_AUGMENT: - data_ud = np.flip(data, axis=1) - data_alt_ud = np.copy(data_alt) - label_ud = np.copy(label) - - data_lr = np.flip(data, axis=2) - data_alt_lr = np.copy(data_alt) - label_lr = np.copy(label) - - data_r1 = np.rot90(data, k=1, axes=(1, 2)) - data_alt_r1 = np.copy(data_alt) - label_r1 = np.copy(label) - - data_r2 = np.rot90(data, k=1, axes=(1, 2)) - data_alt_r2 = np.copy(data_alt) - label_r2 = np.copy(label) - - data = np.concatenate([data, data_ud, data_lr, data_r1, data_r2]) - data_alt = np.concatenate([data_alt, data_alt_ud, data_alt_lr, data_alt_r1, data_alt_r2]) - label = np.concatenate([label, label_ud, label_lr, label_r1, label_r2]) + # if is_training and DO_AUGMENT: + # data_ud = np.flip(data, axis=1) + # data_alt_ud = np.copy(data_alt) + # label_ud = np.copy(label) + # + # data_lr = np.flip(data, axis=2) + # data_alt_lr = np.copy(data_alt) + # label_lr = np.copy(label) + # + # data_r1 = np.rot90(data, k=1, axes=(1, 2)) + # data_alt_r1 = np.copy(data_alt) + # label_r1 = np.copy(label) + # + # data_r2 = np.rot90(data, k=1, axes=(1, 2)) + # data_alt_r2 = np.copy(data_alt) + # label_r2 = np.copy(label) + # + # data = np.concatenate([data, data_ud, data_lr, data_r1, data_r2]) + # data_alt = np.concatenate([data_alt, data_alt_ud, data_alt_lr, data_alt_r1, data_alt_r2]) + # label = np.concatenate([label, label_ud, label_lr, label_r1, label_r2]) return data, data_alt, label @@ -477,8 +477,8 @@ class IcingIntensityFCN: dataset = dataset.map(self.data_function, num_parallel_calls=8) dataset = dataset.cache() dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE, reshuffle_each_iteration=True) - # if DO_AUGMENT: - # dataset = dataset.map(augment_image(), num_parallel_calls=8) + if DO_AUGMENT: + dataset = dataset.map(augment_image(), num_parallel_calls=8) dataset = dataset.prefetch(buffer_size=1) self.train_dataset = dataset -- GitLab