diff --git a/modules/machine_learning/classification.py b/modules/machine_learning/classification.py
index e8358bfcee46cd91de469b65a7a12724887738ad..4e618041f2d0079597a321fb9cc4a1a6bfbecd9b 100644
--- a/modules/machine_learning/classification.py
+++ b/modules/machine_learning/classification.py
@@ -4,7 +4,7 @@ import numpy as np
 import scipy.optimize as opt
 from sklearn import preprocessing
 import matplotlib.pyplot as plt
-from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, jaccard_score, f1_score, precision_score, recall_score, roc_auc_score
+from sklearn.metrics import confusion_matrix, accuracy_score, jaccard_score, f1_score, precision_score, recall_score, roc_auc_score
 from sklearn.model_selection import train_test_split
 from sklearn.linear_model import LogisticRegression
 from sklearn.neighbors import KNeighborsClassifier
@@ -114,4 +114,6 @@ def decision_tree(x, y, max_depth=4):
     print('Precision:   ', "{:.4f}".format(precision_score(y_test, yhat)))
     print('Recall:      ', "{:.4f}".format(recall_score(y_test, yhat)))
     print('F1:          ', "{:.4f}".format(f1_score(y_test, yhat)))
-    print('AUC:         ', "{:.4f}".format(roc_auc_score(y_test, yhat_prob[:, 1])))
\ No newline at end of file
+    print('AUC:         ', "{:.4f}".format(roc_auc_score(y_test, yhat_prob[:, 1])))
+
+    return DT