From b0fc613c4b9b9996f3182d76e1d29889bec8a079 Mon Sep 17 00:00:00 2001
From: tomrink <rink@ssec.wisc.edu>
Date: Mon, 1 Aug 2022 14:37:32 -0500
Subject: [PATCH] fix some cf issues

---
 modules/deeplearning/cnn_l1b_l2_16.py | 60 +++++++++++++--------------
 1 file changed, 28 insertions(+), 32 deletions(-)

diff --git a/modules/deeplearning/cnn_l1b_l2_16.py b/modules/deeplearning/cnn_l1b_l2_16.py
index 79cba6db..0531a21b 100644
--- a/modules/deeplearning/cnn_l1b_l2_16.py
+++ b/modules/deeplearning/cnn_l1b_l2_16.py
@@ -414,9 +414,9 @@ class UNET:
 
         conv = input_layer
 
-        # conv = build_residual_block_1x1(input_layer, num_filters, activation, 'Residual_Block_1', padding=padding)
+        conv = build_residual_block_1x1(input_layer, num_filters, activation, 'Residual_Block_1', padding=padding)
 
-        # conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_2', padding=padding)
+        conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_2', padding=padding)
 
         # conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_3', padding=padding)
 
@@ -467,8 +467,8 @@ class UNET:
         conv = tf.keras.layers.BatchNormalization()(conv)
         print(conv.shape)
 
-        skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip)
-        skip = tf.keras.layers.BatchNormalization()(skip)
+        conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(conv)
+        conv = tf.keras.layers.BatchNormalization()(conv)
 
         conv = conv + skip
         conv = tf.keras.layers.LeakyReLU()(conv)
@@ -476,50 +476,46 @@ class UNET:
         # -----------------------------------------------------------------------------------------------------------
 
         skip = conv
-        num_filters *= 2
+
         conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
-        conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
         conv = tf.keras.layers.BatchNormalization()(conv)
         
-        skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip)
-        skip = tf.keras.layers.MaxPool2D(padding=padding)(skip)
-        skip = tf.keras.layers.BatchNormalization()(skip)
+        conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(conv)
+        conv = tf.keras.layers.BatchNormalization()(conv)
         
         conv = conv + skip
         conv = tf.keras.layers.LeakyReLU()(conv)
         print('2d: ', conv.shape)
-        # # ----------------------------------------------------------------------------------------------------------
-        #
+        # ----------------------------------------------------------------------------------------------------------
+
         skip = conv
-        num_filters *= 2
+
         conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
-        conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
         conv = tf.keras.layers.BatchNormalization()(conv)
         
-        skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip)
-        skip = tf.keras.layers.MaxPool2D(padding=padding)(skip)
-        skip = tf.keras.layers.BatchNormalization()(skip)
+        conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(conv)
+        conv = tf.keras.layers.BatchNormalization()(conv)
         
         conv = conv + skip
         conv = tf.keras.layers.LeakyReLU()(conv)
         print('3d: ', conv.shape)
-        #
-        # return conv
-        # -----------------------------------------------------------------------------------------------------------
 
-        skip = conv
-        num_filters *= 2
-        conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
-        conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
-        conv = tf.keras.layers.BatchNormalization()(conv)
-        
-        skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip)
-        skip = tf.keras.layers.MaxPool2D(padding=padding)(skip)
-        skip = tf.keras.layers.BatchNormalization()(skip)
-        
-        conv = conv + skip
-        conv = tf.keras.layers.LeakyReLU()(conv)
-        print('4d: ', conv.shape)
+        return conv
+
+        # -----------------------------------------------------------------------------------------------------------
+        # skip = conv
+        # num_filters *= 2
+        # conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
+        # conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
+        # conv = tf.keras.layers.BatchNormalization()(conv)
+        #
+        # skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip)
+        # skip = tf.keras.layers.MaxPool2D(padding=padding)(skip)
+        # skip = tf.keras.layers.BatchNormalization()(skip)
+        #
+        # conv = conv + skip
+        # conv = tf.keras.layers.LeakyReLU()(conv)
+        # print('4d: ', conv.shape)
 
         return conv
 
-- 
GitLab