diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index 79d88794ef9d89059dd349d7e4c508c9326b67f0..6153c80dc0c6a193559f6fb49e9158dfabba3a51 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -31,7 +31,7 @@ EARLY_STOP = True NOISE_TRAINING = False NOISE_STDDEV = 0.01 -DO_AUGMENT = False +DO_AUGMENT = True DO_SMOOTH = False SIGMA = 1.0 @@ -70,20 +70,21 @@ print('label_param: ', label_param) KERNEL_SIZE = 3 # target size: (128, 128) N_X = N_Y = 1 +LEN_X = LEN_Y = 128 if KERNEL_SIZE == 3: - slc_x = slice(2, N_X*128 + 4) - slc_y = slice(2, N_Y*128 + 4) - slc_x_2 = slice(1, N_X*128 + 6, 2) - slc_y_2 = slice(1, N_Y*128 + 6, 2) - x_2 = np.arange(int((N_X*128)/2) + 3) - y_2 = np.arange(int((N_Y*128)/2) + 3) - t = np.arange(0, int((N_X*128)/2) + 3, 0.5) - s = np.arange(0, int((N_Y*128)/2) + 3, 0.5) - x_k = slice(1, N_X*128 + 3) - y_k = slice(1, N_Y*128 + 3) - x_128 = slice(3, N_X*128 + 3) - y_128 = slice(3, N_Y*128 + 3) + slc_x = slice(2, N_X*LEN_X + 4) + slc_y = slice(2, N_Y*LEN_Y + 4) + slc_x_2 = slice(1, N_X*LEN_X + 6, 2) + slc_y_2 = slice(1, N_Y*LEN_Y + 6, 2) + x_2 = np.arange(int((N_X*LEN_X)/2) + 3) + y_2 = np.arange(int((N_Y*LEN_Y)/2) + 3) + t = np.arange(0, int((N_X*LEN_X)/2) + 3, 0.5) + s = np.arange(0, int((N_Y*LEN_Y)/2) + 3, 0.5) + x_k = slice(1, N_X*LEN_X + 3) + y_k = slice(1, N_Y*LEN_Y + 3) + x_128 = slice(3, N_X*LEN_X + 3) + y_128 = slice(3, N_Y*LEN_Y + 3) elif KERNEL_SIZE == 5: slc_x = slice(3, 135) slc_y = slice(3, 135)