From aa4198531d43f24f44dc97a09feab3b15b82969a Mon Sep 17 00:00:00 2001
From: tomrink <rink@ssec.wisc.edu>
Date: Wed, 9 Nov 2022 15:24:40 -0600
Subject: [PATCH] snapshot...

---
 modules/deeplearning/espcn_l1b_l2.py | 15 +++++++--------
 1 file changed, 7 insertions(+), 8 deletions(-)

diff --git a/modules/deeplearning/espcn_l1b_l2.py b/modules/deeplearning/espcn_l1b_l2.py
index 3c98ceba..4e987a46 100644
--- a/modules/deeplearning/espcn_l1b_l2.py
+++ b/modules/deeplearning/espcn_l1b_l2.py
@@ -382,25 +382,24 @@ class ESPCN:
 
         conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', scale=scale)
 
-        # conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', scale=scale)
+        conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', scale=scale)
 
-        # conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', scale=scale)
+        conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', scale=scale)
 
-        conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation, kernel_initializer=kernel_initializer)(conv_b)
+        conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_6', scale=scale)
 
-        conv = conv + conv_b
-        print(conv.shape)
+        conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, kernel_initializer=kernel_initializer)(conv_b)
 
-        conv = tf.keras.layers.Conv2D(IMG_DEPTH * (factor ** 2), 3, padding=padding, activation=activation)(conv)
+        conv = conv + conv_b
         print(conv.shape)
 
-        conv = tf.keras.layers.Conv2D(IMG_DEPTH * (factor ** 2), 3, padding=padding, activation=activation)(conv)
+        conv = tf.keras.layers.Conv2D(num_filters * (factor ** 2), 3, padding=padding, activation=activation)(conv)
         print(conv.shape)
 
         conv = tf.nn.depth_to_space(conv, factor)
         print(conv.shape)
 
-        self.logits = tf.keras.layers.Conv2D(IMG_DEPTH, kernel_size=1, strides=1, padding=padding, name='regression')(conv)
+        self.logits = tf.keras.layers.Conv2D(IMG_DEPTH, kernel_size=3, strides=1, padding=padding, name='regression')(conv)
 
         print(self.logits.shape)
 
-- 
GitLab