diff --git a/modules/deeplearning/cloud_opd_srcnn_abi.py b/modules/deeplearning/cloud_opd_srcnn_abi.py index 210b964af04dfad2a303ee9c77a2ac68196f8620..2b1082f157b160ce80e77c5f693652aaf8c59d9c 100644 --- a/modules/deeplearning/cloud_opd_srcnn_abi.py +++ b/modules/deeplearning/cloud_opd_srcnn_abi.py @@ -56,7 +56,8 @@ label_param = 'cld_opd_dcomp' params = ['temp_11_0um_nom', 'refl_0_65um_nom', 'refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01', 'temp_stddev3x3_ch31', 'refl_stddev3x3_ch01', label_param] params_i = ['temp_11_0um_nom', 'refl_0_65um_nom', 'temp_stddev3x3_ch31', 'refl_stddev3x3_ch01', label_param] -data_params_half = ['temp_11_0um_nom', 'refl_0_65um_nom'] +# data_params_half = ['temp_11_0um_nom', 'refl_0_65um_nom'] +data_params_half = ['temp_11_0um_nom'] data_params_full = ['refl_0_65um_nom'] sub_fields = ['refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01'] # sub_fields = ['refl_stddev3x3_ch01'] @@ -209,7 +210,7 @@ class SRCNN: self.test_label_files = None # self.n_chans = len(data_params_half) + len(data_params_full) + 1 - self.n_chans = 6 + self.n_chans = 3 self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) @@ -269,6 +270,11 @@ class SRCNN: tmp = normalize(tmp, param, mean_std_dct) data_norm.append(tmp) + tmp = input_label[:, label_idx_i, :, :] + tmp = np.where(np.isnan(tmp), 0, tmp) + tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) + data_norm.append(tmp[:, self.slc_y, self.slc_x]) + tmp = input_label[:, label_idx_i, :, :] tmp = tmp.copy() tmp = np.where(np.isnan(tmp), 0.0, tmp) @@ -291,16 +297,16 @@ class SRCNN: # tmp = np.where(np.isnan(tmp), 0.0, tmp) # data_norm.append(tmp) - for param in sub_fields: - idx = params.index(param) - tmp = input_data[:, idx, :, :] - tmp = upsample_nearest(tmp) - tmp = tmp[:, self.slc_y, self.slc_x] - if param != 'refl_substddev_ch01': - tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) - else: - tmp = np.where(np.isnan(tmp), 0, tmp) - data_norm.append(tmp) + # for param in sub_fields: + # idx = params.index(param) + # tmp = input_data[:, idx, :, :] + # tmp = upsample_nearest(tmp) + # tmp = tmp[:, self.slc_y, self.slc_x] + # if param != 'refl_substddev_ch01': + # tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) + # else: + # tmp = np.where(np.isnan(tmp), 0, tmp) + # data_norm.append(tmp) # --------------------------------------------------- data = np.stack(data_norm, axis=3) @@ -409,7 +415,7 @@ class SRCNN: activation = tf.nn.relu momentum = 0.99 - num_filters = 64 + num_filters = 32 input_2d = self.inputs[0] print('input: ', input_2d.shape)