diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index cff7396a3abba2b09187d9b1ea964de6551b0036..3820f8beaa4d9a582457d846816074d0b1bb1ebd 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -19,7 +19,7 @@ from scipy.ndimage import gaussian_filter LOG_DEVICE_PLACEMENT = False PROC_BATCH_SIZE = 4 -PROC_BATCH_BUFFER_SIZE = 50000 +PROC_BATCH_BUFFER_SIZE = 5000 NumClasses = 2 if NumClasses == 2: @@ -35,7 +35,7 @@ EARLY_STOP = True NOISE_TRAINING = False NOISE_STDDEV = 0.01 -DO_AUGMENT = True +DO_AUGMENT = False DO_SMOOTH = False SIGMA = 1.0 @@ -267,7 +267,6 @@ class SRCNN: for param in data_params_half: idx = params.index(param) tmp = input_data[:, idx, :, :] - tmp = tmp.copy() tmp = np.where(np.isnan(tmp), 0, tmp) if DO_ESPCN: tmp = tmp[:, slc_y_2, slc_x_2] @@ -281,7 +280,6 @@ class SRCNN: for param in data_params_full: idx = params.index(param) tmp = input_data[:, idx, :, :] - tmp = tmp.copy() tmp = np.where(np.isnan(tmp), 0, tmp) # Full res: tmp = tmp[:, slc_y, slc_x] @@ -291,7 +289,6 @@ class SRCNN: data_norm.append(tmp) # --------------------------------------------------- tmp = input_data[:, label_idx, :, :] - tmp = tmp.copy() tmp = np.where(np.isnan(tmp), 0, tmp) if DO_SMOOTH: tmp = smooth_2d(tmp, sigma=SIGMA) @@ -316,7 +313,6 @@ class SRCNN: # ----------------------------------------------------- # ----------------------------------------------------- label = input_data[:, label_idx, :, :] - label = label.copy() if DO_SMOOTH: label = np.where(np.isnan(label), 0, label) label = smooth_2d(label, sigma=SIGMA) @@ -468,10 +464,10 @@ class SRCNN: self.loss = tf.keras.losses.MeanSquaredError() # Regression # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) - initial_learning_rate = 0.005 + initial_learning_rate = 0.002 decay_rate = 0.95 steps_per_epoch = int(self.num_data_samples/BATCH_SIZE) # one epoch - decay_steps = int(steps_per_epoch) + decay_steps = int(steps_per_epoch) * 2 print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps) self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate)