diff --git a/modules/deeplearning/cnn_cld_frac_mod_res.py b/modules/deeplearning/cnn_cld_frac_mod_res.py index 3a115371f46106b5e8949b724c579df7b97724e7..6ef8c920e883e8e35ea6dc49e93dd0230c1fdfe1 100644 --- a/modules/deeplearning/cnn_cld_frac_mod_res.py +++ b/modules/deeplearning/cnn_cld_frac_mod_res.py @@ -89,8 +89,8 @@ if KERNEL_SIZE == 3: y_k = slice(1, N*128 + 3) # x_128 = slice(3, N*128 + 3) # y_128 = slice(3, N*128 + 3) - x_128 = slice(2, N*128 + 2) - y_128 = slice(2, N*128 + 2) + x_128 = slice(4, N*128 + 4) + y_128 = slice(4, N*128 + 4) elif KERNEL_SIZE == 5: slc_x = slice(3, 135) slc_y = slice(3, 135) @@ -361,7 +361,7 @@ class SRCNN: tmp = tmp[:, slc_y_2, slc_x_2] else: # Half res upsampled to full res: tmp = get_grid_cell_mean(tmp) - tmp = tmp[:, 0:66, 0:66] + tmp = tmp[:, 1:67, 1:67] tmp = normalize(tmp, param, mean_std_dct) data_norm.append(tmp) @@ -376,9 +376,9 @@ class SRCNN: hi = normalize(hi, param, mean_std_dct) avg = normalize(avg, param, mean_std_dct) - data_norm.append(lo[:, 0:66, 0:66]) - data_norm.append(hi[:, 0:66, 0:66]) - data_norm.append(avg[:, 0:66, 0:66]) + data_norm.append(lo[:, 1:67, 1:67]) + data_norm.append(hi[:, 1:67, 1:67]) + data_norm.append(avg[:, 1:67, 1:67]) # data_norm.append(std[:, 0:66, 0:66]) # --------------------------------------------------- tmp = input_data[:, label_idx, :, :] @@ -387,7 +387,7 @@ class SRCNN: tmp = tmp[:, slc_y_2, slc_x_2] else: # Half res upsampled to full res: tmp = get_grid_cell_mean(tmp) - tmp = tmp[:, 0:66, 0:66] + tmp = tmp[:, 1:67, 1:67] if label_param != 'cloud_probability': tmp = normalize(tmp, label_param, mean_std_dct) data_norm.append(tmp)