From a48ebfbad65c014bbed7ff46a9caf835db9d0f60 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Tue, 27 Sep 2022 14:53:02 -0500 Subject: [PATCH] snapshot... --- modules/deeplearning/srcnn_l1b_l2.py | 9 +++++++-- 1 file changed, 7 insertions(+), 2 deletions(-) diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index 8dcebe73..402d88c8 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -13,7 +13,7 @@ import h5py LOG_DEVICE_PLACEMENT = False -PROC_BATCH_SIZE = 4 +PROC_BATCH_SIZE = 2 PROC_BATCH_BUFFER_SIZE = 50000 NumClasses = 2 @@ -180,7 +180,7 @@ class SRCNN: self.test_data_nda = None self.test_label_nda = None - self.n_chans = len(data_params) + self.n_chans = len(data_params) + 1 self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) # self.X_img = tf.keras.Input(shape=(36, 36, self.n_chans)) @@ -217,6 +217,11 @@ class SRCNN: tmp = resample(y_64, x_64, tmp, s, t) tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) data_norm.append(tmp) + # -------- + tmp = input_data[:, 2, 3:131, 3:131] + tmp = normalize(tmp, 'refl_0_65um_nom') + data_norm.append(tmp) + # --------- data = np.stack(data_norm, axis=3) data = data.astype(np.float32) -- GitLab