diff --git a/modules/deeplearning/icing_fcn.py b/modules/deeplearning/icing_fcn.py index f70d69d73e4e98e491c1a66f2685839c60c9f611..015dd0474538f192a20e9bb6d6495a0c0772702c 100644 --- a/modules/deeplearning/icing_fcn.py +++ b/modules/deeplearning/icing_fcn.py @@ -316,26 +316,26 @@ class IcingIntensityFCN: label = np.where(np.invert(np.logical_or(label == 0, label == 1)), 2, label) label = label.reshape((label.shape[0], 1)) - # if is_training and DO_AUGMENT: - # data_ud = np.flip(data, axis=1) - # data_alt_ud = np.copy(data_alt) - # label_ud = np.copy(label) - # - # data_lr = np.flip(data, axis=2) - # data_alt_lr = np.copy(data_alt) - # label_lr = np.copy(label) - # - # data_r1 = np.rot90(data, k=1, axes=(1, 2)) - # data_alt_r1 = np.copy(data_alt) - # label_r1 = np.copy(label) - # - # data_r2 = np.rot90(data, k=1, axes=(1, 2)) - # data_alt_r2 = np.copy(data_alt) - # label_r2 = np.copy(label) - # - # data = np.concatenate([data, data_ud, data_lr, data_r1, data_r2]) - # data_alt = np.concatenate([data_alt, data_alt_ud, data_alt_lr, data_alt_r1, data_alt_r2]) - # label = np.concatenate([label, label_ud, label_lr, label_r1, label_r2]) + if is_training and DO_AUGMENT: + data_ud = np.flip(data, axis=1) + data_alt_ud = np.copy(data_alt) + label_ud = np.copy(label) + + data_lr = np.flip(data, axis=2) + data_alt_lr = np.copy(data_alt) + label_lr = np.copy(label) + + data_r1 = np.rot90(data, k=1, axes=(1, 2)) + data_alt_r1 = np.copy(data_alt) + label_r1 = np.copy(label) + + data_r2 = np.rot90(data, k=1, axes=(1, 2)) + data_alt_r2 = np.copy(data_alt) + label_r2 = np.copy(label) + + data = np.concatenate([data, data_ud, data_lr, data_r1, data_r2]) + data_alt = np.concatenate([data_alt, data_alt_ud, data_alt_lr, data_alt_r1, data_alt_r2]) + label = np.concatenate([label, label_ud, label_lr, label_r1, label_r2]) return data, data_alt, label @@ -477,8 +477,8 @@ class IcingIntensityFCN: dataset = dataset.map(self.data_function, num_parallel_calls=8) dataset = dataset.cache() dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE, reshuffle_each_iteration=True) - if DO_AUGMENT: - dataset = dataset.map(augment_image(), num_parallel_calls=8) + # if DO_AUGMENT: + # dataset = dataset.map(augment_image(), num_parallel_calls=8) dataset = dataset.prefetch(buffer_size=1) self.train_dataset = dataset