diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index 9339f9e581779eedc2cf112ad4bb6d8b2c087dfb..430c6c715b223dc3f3a72c4708c470c7b0722191 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -668,10 +668,11 @@ class SRCNN: preds = np.concatenate(self.test_preds) print(labels.shape, preds.shape) - labels_denorm = denormalize(labels, label_param, mean_std_dct) - preds_denorm = denormalize(preds, label_param, mean_std_dct) + # labels_denorm = denormalize(labels, label_param, mean_std_dct) + # preds_denorm = denormalize(preds, label_param, mean_std_dct) - return labels_denorm, preds_denorm + # return labels_denorm, preds_denorm + return labels, preds def do_evaluate(self, data, ckpt_dir): @@ -714,9 +715,11 @@ class SRCNN: def run_restore_static(directory, ckpt_dir, out_file=None): nn = SRCNN() - labels_denorm, preds_denorm = nn.run_restore(directory, ckpt_dir) + # labels_denorm, preds_denorm = nn.run_restore(directory, ckpt_dir) + labels, preds = nn.run_restore(directory, ckpt_dir) if out_file is not None: - np.save(out_file, [labels_denorm, preds_denorm]) + # np.save(out_file, [labels_denorm, preds_denorm]) + np.save(out_file, [labels, preds]) def run_evaluate_static(in_file, out_file, ckpt_dir):