diff --git a/modules/deeplearning/cloud_opd_fcn_abi.py b/modules/deeplearning/cloud_opd_fcn_abi.py index 0c3f8007d60cb6eb28d8a76831159709a0947bcd..314cbf1d66120b42207185584cbb27b61ca84a2e 100644 --- a/modules/deeplearning/cloud_opd_fcn_abi.py +++ b/modules/deeplearning/cloud_opd_fcn_abi.py @@ -687,7 +687,6 @@ class SRCNN: preds = np.concatenate(self.test_preds) inputs = np.concatenate(self.test_input) cat_cld_frac = np.concatenate(self.test_cat_cf) - print(labels.shape, preds.shape, cat_cld_frac.shape, inputs.shape) # labels = denormalize(labels, label_param, mean_std_dct) # preds = denormalize(preds, label_param, mean_std_dct) @@ -897,12 +896,13 @@ def run_restore_static(directory, ckpt_dir, out_file=None): if out_file is not None: y_hi, x_hi = (Y_LEN // 4) + 1, (X_LEN // 4) + 1 np.save(out_file, - [labels, preds, + [labels[:, :, :, 0], preds[:, :, :, 0], inputs[:, 1:y_hi, 1:x_hi, 0], descale(inputs[:, 1:y_hi, 1:x_hi, 1], 'refl_0_65um_nom', mean_std_dct), descale(inputs[:, 1:y_hi, 1:x_hi, 2], 'refl_0_65um_nom', mean_std_dct), inputs[:, 1:y_hi, 1:x_hi, 3], - descale(inputs[:, 1:y_hi, 1:x_hi, 4], label_param, mean_std_dct)]) + descale(inputs[:, 1:y_hi, 1:x_hi, 4], label_param, mean_std_dct), + cat_cld_frac[:, :, :]]) def run_evaluate_static(in_file, out_file, ckpt_dir):