diff --git a/modules/deeplearning/cloud_opd_srcnn_viirs.py b/modules/deeplearning/cloud_opd_srcnn_viirs.py index e3fc2a1e18c53dc2e8ef3117408ff6eb6281911c..07bd0a688fa44dbca61fe1de2924b0280282fe3f 100644 --- a/modules/deeplearning/cloud_opd_srcnn_viirs.py +++ b/modules/deeplearning/cloud_opd_srcnn_viirs.py @@ -619,11 +619,10 @@ class SRCNN: preds = np.concatenate(self.test_preds) print(labels.shape, preds.shape) - # labels_denorm = denormalize(labels, label_param, mean_std_dct) - # preds_denorm = denormalize(preds, label_param, mean_std_dct) + labels_denorm = denormalize(labels, label_param, mean_std_dct) + preds_denorm = denormalize(preds, label_param, mean_std_dct) - # return labels_denorm, preds_denorm - return labels, preds + return labels_denorm, preds_denorm def do_evaluate(self, inputs, ckpt_dir): @@ -674,11 +673,9 @@ class SRCNN: def run_restore_static(directory, ckpt_dir, out_file=None): nn = SRCNN() - # labels_denorm, preds_denorm = nn.run_restore(directory, ckpt_dir) - labels, preds = nn.run_restore(directory, ckpt_dir) + labels_denorm, preds_denorm = nn.run_restore(directory, ckpt_dir) if out_file is not None: - # np.save(out_file, [labels_denorm, preds_denorm]) - np.save(out_file, [labels, preds]) + np.save(out_file, [labels_denorm, preds_denorm]) def run_evaluate_static(in_file, out_file, ckpt_dir):