diff --git a/modules/deeplearning/icing_dnn.py b/modules/deeplearning/icing_dnn.py index aa6d6f5d25a73de84dd91268b1cb1a29095095ff..ae02f0d85812d799951200f519218633d0c0d29d 100644 --- a/modules/deeplearning/icing_dnn.py +++ b/modules/deeplearning/icing_dnn.py @@ -130,7 +130,7 @@ def build_residual_block(input, drop_rate, num_neurons, activation, block_name, class IcingIntensityDNN: def __init__(self, y_dim_len=IMG_WIDTH, x_dim_len=IMG_WIDTH, - day_night='DAY', l1b_or_l2='both', use_flight_altitude=False, datapath=None): + day_night='DAY', l1b_or_l2='l2', use_flight_altitude=False, datapath=None): print('day_night: ', day_night) print('l1b_or_l2: ', l1b_or_l2) print('use_flight_altitude: ', use_flight_altitude) @@ -400,8 +400,7 @@ class IcingIntensityDNN: else: h5f = self.h5f_l2_trn time = h5f['time'] - # trn_idxs = np.arange(time.shape[0]) - trn_idxs = np.arange(50000) + trn_idxs = np.arange(time.shape[0]) if seed is not None: np.random.seed(seed) np.random.shuffle(trn_idxs) @@ -411,8 +410,7 @@ class IcingIntensityDNN: else: h5f = self.h5f_l2_tst time = h5f['time'] - # tst_idxs = np.arange(time.shape[0]) - tst_idxs = np.arange(5000) + tst_idxs = np.arange(time.shape[0]) if seed is not None: np.random.seed(seed) np.random.shuffle(tst_idxs) @@ -481,7 +479,7 @@ class IcingIntensityDNN: flat = self.input n_hidden = self.input.shape[1] - fac = 2 + fac = 6 fc = build_residual_block(flat, drop_rate, fac * n_hidden, activation, 'Residual_Block_1', doDropout=True, doBatchNorm=True)