From 9e3a820675dcb2657bbbc14054d2f3e437f32209 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Mon, 17 Oct 2022 15:13:38 -0500 Subject: [PATCH] normalize before upsampling (nans) --- modules/deeplearning/srcnn_l1b_l2.py | 40 ++++++++++++++++++++++++++++ 1 file changed, 40 insertions(+) diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index 899539f6..35bec4f6 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -718,6 +718,46 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): return out_sr +def run_evaluate_static_2(in_file, out_file, ckpt_dir): + nda = np.load(in_file) + grd_a = nda[:, 0, :, :] + grd_a = grd_a[:, 3:131:2, 3:131:2] + + grd_b = nda[:, 2, 3:131, 3:131] + + grd_c = nda[:, 3, :, :] + grd_c = grd_c[:, 3:131:2, 3:131:2] + + num, leny, lenx = grd_a.shape + x = np.arange(lenx) + y = np.arange(leny) + x_up = np.arange(0, lenx, 0.5) + y_up = np.arange(0, leny, 0.5) + + grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct) + grd_a = resample_2d_linear(x, y, grd_a, x_up, y_up) + + grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct) + + if label_param == 'cloud_fraction': + grd_c = np.where(np.isnan(grd_c), 0, grd_c) + else: + grd_c = normalize(grd_c, label_param, mean_std_dct) + grd_c = resample_2d_linear(x, y, grd_c, x_up, y_up) + + data = np.stack([grd_a, grd_b, grd_c], axis=3) + print(data.shape) + + nn = SRCNN() + out_sr = nn.run_evaluate(data, ckpt_dir) + if label_param != 'cloud_fraction': + out_sr = denormalize(out_sr, label_param, mean_std_dct) + if out_file is not None: + np.save(out_file, out_sr) + else: + return out_sr + + def analyze(fpath='/Users/tomrink/clavrx_snpp_viirs.A2019080.0100.001.2019080064252.uwssec_B00038315.level2.h5', param='cloud_fraction'): h5f = h5py.File(fpath, 'r') grd = get_grid_values_all(h5f, param) -- GitLab