diff --git a/modules/deeplearning/cloud_opd_srcnn_abi.py b/modules/deeplearning/cloud_opd_srcnn_abi.py index dc2b62d2df14ed21e4aef3df344c4559cddfc67b..94064599bbcabf53cc9fd442cc390fa55d011f0d 100644 --- a/modules/deeplearning/cloud_opd_srcnn_abi.py +++ b/modules/deeplearning/cloud_opd_srcnn_abi.py @@ -206,7 +206,7 @@ class SRCNN: self.test_label_files = None # self.n_chans = len(data_params_half) + len(data_params_full) + 1 - self.n_chans = 3 + self.n_chans = 6 self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) @@ -265,16 +265,16 @@ class SRCNN: tmp = normalize(tmp, param, mean_std_dct) data_norm.append(tmp) - # for param in sub_fields: - # idx = params.index(param) - # tmp = input_data[:, idx, :, :] - # tmp = tmp[:, self.slc_y_m, self.slc_x_m] - # tmp = upsample_nearest(tmp) - # if param != 'refl_substddev_ch01': - # tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) - # else: - # tmp = np.where(np.isnan(tmp), 0, tmp) - # data_norm.append(tmp) + for param in sub_fields: + idx = params.index(param) + tmp = input_data[:, idx, :, :] + tmp = tmp[:, self.slc_y_m, self.slc_x_m] + tmp = upsample_nearest(tmp) + if param != 'refl_substddev_ch01': + tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) + else: + tmp = np.where(np.isnan(tmp), 0, tmp) + data_norm.append(tmp) # for param in data_params_full: # idx = params_i.index(param)