diff --git a/modules/deeplearning/icing_fcn.py b/modules/deeplearning/icing_fcn.py index b51306f6a9d6f48dd47fcad9adf10f8e9d2a0f2a..a267ed40a841e86de7f3640066697e79c845c19e 100644 --- a/modules/deeplearning/icing_fcn.py +++ b/modules/deeplearning/icing_fcn.py @@ -1198,11 +1198,7 @@ def run_average_models(ckpt_dir_s_path, day_night='NIGHT', l1b_andor_l2='BOTH', for k, w in enumerate(m): model_lyrs[k].append(w) for lyr in model_lyrs: - nda = np.stack(lyr, axis=-1) - print(nda.shape) - avg = np.mean(nda, axis=-1) - print(avg.shape) - avg_model_weights.append(nda) + avg_model_weights.append(np.mean(np.stack(lyr, axis=-1), axis=-1)) # -- Make a new model for the averaged weights new_model = IcingIntensityFCN(day_night=day_night, l1b_or_l2=l1b_andor_l2, use_flight_altitude=use_flight_altitude) @@ -1211,13 +1207,13 @@ def run_average_models(ckpt_dir_s_path, day_night='NIGHT', l1b_andor_l2='BOTH', new_model.build_evaluation() # -- Save the averaged weights to a new the model - # if not os.path.exists(modeldir): - # os.mkdir(modeldir) - # ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=new_model.model) - # ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3) - # - # new_model.model.set_weights(avg_weights) - # ckpt_manager.save() + if not os.path.exists(modeldir): + os.mkdir(modeldir) + ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=new_model.model) + ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3) + + new_model.model.set_weights(avg_model_weights) + ckpt_manager.save() return