From 96e97968725f52c6e147adf7ca1125514bdf9188 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Thu, 6 Jul 2023 13:35:02 -0500 Subject: [PATCH] snapshot... --- .../deeplearning/cloud_opd_srcnn_abi_v2.py | 927 ++++++++++++++++++ 1 file changed, 927 insertions(+) create mode 100644 modules/deeplearning/cloud_opd_srcnn_abi_v2.py diff --git a/modules/deeplearning/cloud_opd_srcnn_abi_v2.py b/modules/deeplearning/cloud_opd_srcnn_abi_v2.py new file mode 100644 index 00000000..3037a221 --- /dev/null +++ b/modules/deeplearning/cloud_opd_srcnn_abi_v2.py @@ -0,0 +1,927 @@ +import gc +import glob +import tensorflow as tf + +from util.setup import logdir, modeldir, now, ancillary_path +from util.util import EarlyStop, normalize, denormalize, scale, descale, get_grid_values_all, resample_2d_linear, smooth_2d +import os, datetime +import numpy as np +import pickle +import h5py +import time + +LOG_DEVICE_PLACEMENT = False + +PROC_BATCH_SIZE = 4 +PROC_BATCH_BUFFER_SIZE = 5000 + +NumClasses = 2 +if NumClasses == 2: + NumLogits = 1 +else: + NumLogits = NumClasses + +BATCH_SIZE = 128 +NUM_EPOCHS = 80 + +TRACK_MOVING_AVERAGE = False +EARLY_STOP = True + +NOISE_TRAINING = False +NOISE_STDDEV = 0.01 +DO_AUGMENT = True + +DO_SMOOTH = False +SIGMA = 1.0 +DO_ZERO_OUT = False + +# setup scaling parameters dictionary +mean_std_dct = {} +mean_std_file = ancillary_path+'mean_std_lo_hi_l2.pkl' +f = open(mean_std_file, 'rb') +mean_std_dct_l2 = pickle.load(f) +f.close() + +mean_std_file = ancillary_path+'mean_std_lo_hi_l1b.pkl' +f = open(mean_std_file, 'rb') +mean_std_dct_l1b = pickle.load(f) +f.close() + +mean_std_dct.update(mean_std_dct_l1b) +mean_std_dct.update(mean_std_dct_l2) + +IMG_DEPTH = 1 + +label_param = 'cld_opd_dcomp' + +params = ['temp_11_0um_nom', 'refl_0_65um_nom', 'refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01', 'temp_stddev3x3_ch31', 'refl_stddev3x3_ch01', label_param] +params_i = ['temp_11_0um_nom', 'refl_0_65um_nom', 'temp_stddev3x3_ch31', 'refl_stddev3x3_ch01', label_param] +data_params_half = ['temp_11_0um_nom', 'refl_0_65um_nom'] +data_params_full = ['refl_0_65um_nom'] +sub_fields = ['refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01'] +# sub_fields = ['refl_stddev3x3_ch01'] + +label_idx_i = params_i.index(label_param) +label_idx = params.index(label_param) + +print('data_params_half: ', data_params_half) +print('data_params_full: ', data_params_full) +print('label_param: ', label_param) + +KERNEL_SIZE = 3 + + +def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.relu, padding='SAME', + kernel_initializer='he_uniform', scale=None, kernel_size=3, + do_drop_out=True, drop_rate=0.5, do_batch_norm=True): + + with tf.name_scope(block_name): + skip = tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding=padding, kernel_initializer=kernel_initializer, activation=activation)(conv) + skip = tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding=padding, activation=None)(skip) + + if scale is not None: + skip = tf.keras.layers.Lambda(lambda x: x * scale)(skip) + + if do_drop_out: + skip = tf.keras.layers.Dropout(drop_rate)(skip) + + if do_batch_norm: + skip = tf.keras.layers.BatchNormalization()(skip) + + conv = conv + skip + print(block_name+':', conv.shape) + + return conv + + +def upsample_nearest(grd): + bsize, ylen, xlen = grd.shape + up = np.zeros((bsize, ylen*2, xlen*2)) + + up[:, 0::2, 0::2] = grd[:, 0::, 0::] + up[:, 1::2, 0::2] = grd[:, 0::, 0::] + up[:, 0::2, 1::2] = grd[:, 0::, 0::] + up[:, 1::2, 1::2] = grd[:, 0::, 0::] + + return up + + +def upsample_mean(grd): + bsize, ylen, xlen = grd.shape + up = np.zeros((bsize, ylen*2, xlen*2)) + + up[:, ::2, ::2] = grd[:, ::2, ::2] + up[:, 1::2, ::2] = grd[:, ::2, ::2] + up[:, ::2, 1::2] = grd[:, ::2, ::2] + up[:, 1::2, 1::2] = grd[:, ::2, ::2] + + return up + + +def get_grid_cell_mean(grd_k): + grd_k = np.where(np.isnan(grd_k), 0, grd_k) + a = grd_k[:, 0::2, 0::2] + b = grd_k[:, 1::2, 0::2] + c = grd_k[:, 0::2, 1::2] + d = grd_k[:, 1::2, 1::2] + mean = np.nanmean([a, b, c, d], axis=0) + + return mean + + +def get_min_max_std(grd_k): + grd_k = np.where(np.isnan(grd_k), 0, grd_k) + a = grd_k[:, 0::2, 0::2] + b = grd_k[:, 1::2, 0::2] + c = grd_k[:, 0::2, 1::2] + d = grd_k[:, 1::2, 1::2] + + lo = np.nanmin([a, b, c, d], axis=0) + hi = np.nanmax([a, b, c, d], axis=0) + std = np.nanstd([a, b, c, d], axis=0) + avg = np.nanmean([a, b, c, d], axis=0) + + return lo, hi, std, avg + + +def upsample_static(grd, x_2, y_2, t, s, y_k, x_k): + grd = resample_2d_linear(x_2, y_2, grd, t, s) + # grd = grd[:, y_k, x_k] + return grd + + +class SRCNN: + + def __init__(self, LEN_Y=128, LEN_X=128): + + self.train_data = None + self.train_label = None + self.test_data = None + self.test_label = None + self.test_data_denorm = None + + self.train_dataset = None + self.inner_train_dataset = None + self.test_dataset = None + self.eval_dataset = None + self.X_img = None + self.inputs = [] + + self.logits = None + + self.predict_data = None + self.predict_dataset = None + self.mean_list = None + self.std_list = None + + self.training_op = None + self.correct = None + self.accuracy = None + self.loss = None + self.pred_class = None + self.variable_averages = None + + self.global_step = None + + self.writer_train = None + self.writer_valid = None + self.writer_train_valid_loss = None + + self.model = None + self.optimizer = None + self.ema = None + self.train_loss = None + self.train_accuracy = None + self.test_loss = None + self.test_accuracy = None + + self.test_labels = [] + self.test_preds = [] + self.test_probs = None + + self.learningRateSchedule = None + self.num_data_samples = None + self.initial_learning_rate = None + + self.train_data_files = None + self.train_label_files = None + self.test_data_files = None + self.test_label_files = None + + # self.n_chans = len(data_params_half) + len(data_params_full) + 1 + self.n_chans = 6 + + self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) + + self.inputs.append(self.X_img) + + self.slc_x_m = slice(1, int(LEN_X / 2) + 4) + self.slc_y_m = slice(1, int(LEN_Y / 2) + 4) + self.slc_x = slice(3, LEN_X + 5) + self.slc_y = slice(3, LEN_Y + 5) + self.slc_x_2 = slice(2, LEN_X + 7, 2) + self.slc_y_2 = slice(2, LEN_Y + 7, 2) + self.x_2 = np.arange(int(LEN_X / 2) + 3) + self.y_2 = np.arange(int(LEN_Y / 2) + 3) + self.t = np.arange(0, int(LEN_X / 2) + 3, 0.5) + self.s = np.arange(0, int(LEN_Y / 2) + 3, 0.5) + self.x_k = slice(1, LEN_X + 3) + self.y_k = slice(1, LEN_Y + 3) + self.x_128 = slice(4, LEN_X + 4) + self.y_128 = slice(4, LEN_Y + 4) + self.LEN_X = LEN_X + self.LEN_Y = LEN_Y + + tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT) + + def upsample(self, grd): + grd = resample_2d_linear(self.x_2, self.y_2, grd, self.t, self.s) + grd = grd[:, self.y_k, self.x_k] + return grd + + def get_in_mem_data_batch(self, idxs, is_training): + if is_training: + data_files = self.train_data_files + label_files = self.train_label_files + else: + data_files = self.test_data_files + label_files = self.test_label_files + + data_s = [] + label_s = [] + for k in idxs: + f = data_files[k] + nda = np.load(f) + data_s.append(nda) + + f = label_files[k] + nda = np.load(f) + label_s.append(nda) + input_data = np.concatenate(data_s) + input_label = np.concatenate(label_s) + + data_norm = [] + for param in data_params_half: + idx = params.index(param) + tmp = input_data[:, idx, :, :] + tmp = np.where(np.isnan(tmp), 0.0, tmp) + tmp = tmp[:, self.slc_y_m, self.slc_x_m] + tmp = self.upsample(tmp) + tmp = smooth_2d(tmp) + tmp = normalize(tmp, param, mean_std_dct) + data_norm.append(tmp) + + tmp = input_label[:, label_idx_i, :, :] + tmp = tmp.copy() + tmp = np.where(np.isnan(tmp), 0.0, tmp) + tmp = tmp[:, self.slc_y_2, self.slc_x_2] + tmp = self.upsample(tmp) + tmp = smooth_2d(tmp) + tmp = normalize(tmp, label_param, mean_std_dct) + data_norm.append(tmp) + + # for param in sub_fields: + # idx = params.index(param) + # tmp = input_data[:, idx, :, :] + # tmp = np.where(np.isnan(tmp), 0.0, tmp) + # tmp = tmp[:, self.slc_y_m, self.slc_x_m] + # tmp = self.upsample(tmp) + # # if param != 'refl_substddev_ch01': + # if False: + # tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) + # else: + # tmp = np.where(np.isnan(tmp), 0.0, tmp) + # data_norm.append(tmp) + + for param in sub_fields: + idx = params.index(param) + tmp = input_data[:, idx, :, :] + tmp = upsample_nearest(tmp) + tmp = tmp[:, self.slc_y, self.slc_x] + if param != 'refl_substddev_ch01': + tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) + else: + tmp = np.where(np.isnan(tmp), 0, tmp) + data_norm.append(tmp) + # --------------------------------------------------- + + data = np.stack(data_norm, axis=3) + data = data.astype(np.float32) + + # ----------------------------------------------------- + # ----------------------------------------------------- + label = input_label[:, label_idx_i, :, :] + label = label.copy() + label = normalize(label, label_param, mean_std_dct) + # label = scale(label, label_param, mean_std_dct) + label = label[:, self.y_128, self.x_128] + + label = np.where(np.isnan(label), 0.0, label) + label = np.expand_dims(label, axis=3) + + data = data.astype(np.float32) + label = label.astype(np.float32) + + if is_training and DO_AUGMENT: + data_ud = np.flip(data, axis=1) + label_ud = np.flip(label, axis=1) + + data_lr = np.flip(data, axis=2) + label_lr = np.flip(label, axis=2) + + data = np.concatenate([data, data_ud, data_lr]) + label = np.concatenate([label, label_ud, label_lr]) + + return data, label + + def get_in_mem_data_batch_train(self, idxs): + return self.get_in_mem_data_batch(idxs, True) + + def get_in_mem_data_batch_test(self, idxs): + return self.get_in_mem_data_batch(idxs, False) + + @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) + def data_function(self, indexes): + out = tf.numpy_function(self.get_in_mem_data_batch_train, [indexes], [tf.float32, tf.float32]) + return out + + @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) + def data_function_test(self, indexes): + out = tf.numpy_function(self.get_in_mem_data_batch_test, [indexes], [tf.float32, tf.float32]) + return out + + def get_train_dataset(self, indexes): + indexes = list(indexes) + + dataset = tf.data.Dataset.from_tensor_slices(indexes) + dataset = dataset.batch(PROC_BATCH_SIZE) + dataset = dataset.map(self.data_function, num_parallel_calls=8) + dataset = dataset.cache() + if DO_AUGMENT: + dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE) + dataset = dataset.prefetch(buffer_size=1) + self.train_dataset = dataset + + def get_test_dataset(self, indexes): + indexes = list(indexes) + + dataset = tf.data.Dataset.from_tensor_slices(indexes) + dataset = dataset.batch(PROC_BATCH_SIZE) + dataset = dataset.map(self.data_function_test, num_parallel_calls=8) + dataset = dataset.cache() + self.test_dataset = dataset + + def setup_pipeline(self, train_data_files, train_label_files, test_data_files, test_label_files, num_train_samples): + self.train_data_files = train_data_files + self.train_label_files = train_label_files + self.test_data_files = test_data_files + self.test_label_files = test_label_files + + trn_idxs = np.arange(len(train_data_files)) + np.random.shuffle(trn_idxs) + + tst_idxs = np.arange(len(test_data_files)) + + self.get_train_dataset(trn_idxs) + self.get_test_dataset(tst_idxs) + + self.num_data_samples = num_train_samples # approximately + + print('datetime: ', now) + print('training and test data: ') + print('---------------------------') + print('num train samples: ', self.num_data_samples) + print('BATCH SIZE: ', BATCH_SIZE) + print('num test samples: ', tst_idxs.shape[0]) + print('setup_pipeline: Done') + + def setup_test_pipeline(self, test_data_files, test_label_files): + self.test_data_files = test_data_files + self.test_label_files = test_label_files + tst_idxs = np.arange(len(test_data_files)) + self.get_test_dataset(tst_idxs) + print('setup_test_pipeline: Done') + + def build_srcnn(self, do_drop_out=False, do_batch_norm=False, drop_rate=0.5, factor=2): + print('build_cnn') + padding = "SAME" + + # activation = tf.nn.relu + # activation = tf.nn.elu + activation = tf.nn.relu + momentum = 0.99 + + num_filters = 64 + + input_2d = self.inputs[0] + input_2d_conv = input_2d[:, :, :, 0:3] + input_2d_no_conv = input_2d[:, 1:(130-1), 1:(130-1), 3:] + print('input: ', input_2d.shape) + print('input_2d_conv: ', input_2d_conv.shape) + print('input_2d_no_conv: ', input_2d_no_conv.shape) + + conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=KERNEL_SIZE, kernel_initializer='he_uniform', activation=activation, padding='VALID')(input_2d_conv) + print('conv: ', conv.shape) + + conv_nc = tf.keras.layers.Conv2D(num_filters, kernel_size=1, kernel_initializer='he_uniform', activation=activation, padding='SAME')(input_2d_no_conv) + print('conv_nc: ', conv_nc.shape) + + # if NOISE_TRAINING: + # conv = conv_b = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv) + + scale = 0.2 + + conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_1', kernel_size=KERNEL_SIZE, scale=scale) + + conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_2', kernel_size=KERNEL_SIZE, scale=scale) + + conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', kernel_size=KERNEL_SIZE, scale=scale) + + conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', kernel_size=KERNEL_SIZE, scale=scale) + + # conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', kernel_size=KERNEL_SIZE, scale=scale) + + # conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_6', kernel_size=KERNEL_SIZE, scale=scale) + + conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, activation=activation, kernel_initializer='he_uniform', padding=padding)(conv_b) + + # ------------------------------------------------------------------------------------- + #conv_nc = build_residual_conv2d_block(conv_nc, num_filters, 'Residual_Block_nc_1', kernel_size=1, scale=scale) + #conv_nc = build_residual_conv2d_block(conv_nc, num_filters, 'Residual_Block_nc_2', kernel_size=1, scale=scale) + print('conv_nc: ', conv_nc.shape) + + conv = conv + conv_b + conv_nc + print(conv.shape) + + conv = tf.keras.layers.Conv2D(16, kernel_size=1, strides=1, padding=padding)(conv) + conv = tf.keras.layers.Conv2D(16, kernel_size=1, strides=1, padding=padding)(conv) + conv = tf.keras.layers.Conv2D(16, kernel_size=1, strides=1, padding=padding)(conv) + conv = tf.keras.layers.Conv2D(16, kernel_size=1, strides=1, padding=padding)(conv) + + # This is effectively a Dense layer + self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='regression')(conv) + print(self.logits.shape) + + def build_training(self): + + self.loss = tf.keras.losses.MeanSquaredError() # Regression + + # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) + initial_learning_rate = 0.002 + decay_rate = 0.95 + steps_per_epoch = int(self.num_data_samples/BATCH_SIZE) # one epoch + decay_steps = int(steps_per_epoch) * 4 + print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps) + + self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate) + + optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule) + + if TRACK_MOVING_AVERAGE: + # Not really sure this works properly (from tfa) + # optimizer = tfa.optimizers.MovingAverage(optimizer) + self.ema = tf.train.ExponentialMovingAverage(decay=0.9999) + + self.optimizer = optimizer + self.initial_learning_rate = initial_learning_rate + + def build_evaluation(self): + self.train_accuracy = tf.keras.metrics.MeanAbsoluteError(name='train_accuracy') + self.test_accuracy = tf.keras.metrics.MeanAbsoluteError(name='test_accuracy') + self.train_loss = tf.keras.metrics.Mean(name='train_loss') + self.test_loss = tf.keras.metrics.Mean(name='test_loss') + + @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)]) + def train_step(self, inputs, labels): + with tf.GradientTape() as tape: + pred = self.model([inputs], training=True) + loss = self.loss(labels, pred) + total_loss = loss + if len(self.model.losses) > 0: + reg_loss = tf.math.add_n(self.model.losses) + total_loss = loss + reg_loss + gradients = tape.gradient(total_loss, self.model.trainable_variables) + self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables)) + if TRACK_MOVING_AVERAGE: + self.ema.apply(self.model.trainable_variables) + + self.train_loss(loss) + self.train_accuracy(labels, pred) + + return loss + + @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)]) + def test_step(self, inputs, labels): + pred = self.model([inputs], training=False) + t_loss = self.loss(labels, pred) + + self.test_loss(t_loss) + self.test_accuracy(labels, pred) + + # @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)]) + # decorator commented out because pred.numpy(): pred not evaluated yet. + def predict(self, inputs, labels): + pred = self.model([inputs], training=False) + # t_loss = self.loss(tf.squeeze(labels, axis=[3]), pred) + t_loss = self.loss(labels, pred) + + self.test_labels.append(labels) + self.test_preds.append(pred.numpy()) + + self.test_loss(t_loss) + self.test_accuracy(labels, pred) + + def reset_test_metrics(self): + self.test_loss.reset_states() + self.test_accuracy.reset_states() + + def do_training(self, ckpt_dir=None): + + if ckpt_dir is None: + if not os.path.exists(modeldir): + os.mkdir(modeldir) + ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) + ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3) + else: + ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) + ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) + ckpt.restore(ckpt_manager.latest_checkpoint) + + self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train')) + self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid')) + self.writer_train_valid_loss = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train_valid_loss')) + + step = 0 + total_time = 0 + best_test_loss = np.finfo(dtype=np.float).max + + if EARLY_STOP: + es = EarlyStop() + + for epoch in range(NUM_EPOCHS): + self.train_loss.reset_states() + self.train_accuracy.reset_states() + + t0 = datetime.datetime.now().timestamp() + + proc_batch_cnt = 0 + n_samples = 0 + + for data, label in self.train_dataset: + trn_ds = tf.data.Dataset.from_tensor_slices((data, label)) + trn_ds = trn_ds.batch(BATCH_SIZE) + for mini_batch in trn_ds: + if self.learningRateSchedule is not None: + loss = self.train_step(mini_batch[0], mini_batch[1]) + + if (step % 100) == 0: + + with self.writer_train.as_default(): + tf.summary.scalar('loss_trn', loss.numpy(), step=step) + tf.summary.scalar('learning_rate', self.optimizer._decayed_lr('float32').numpy(), step=step) + tf.summary.scalar('num_train_steps', step, step=step) + tf.summary.scalar('num_epochs', epoch, step=step) + + self.reset_test_metrics() + for data_tst, label_tst in self.test_dataset: + tst_ds = tf.data.Dataset.from_tensor_slices((data_tst, label_tst)) + tst_ds = tst_ds.batch(BATCH_SIZE) + for mini_batch_test in tst_ds: + self.test_step(mini_batch_test[0], mini_batch_test[1]) + + with self.writer_valid.as_default(): + tf.summary.scalar('loss_val', self.test_loss.result(), step=step) + tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step) + + with self.writer_train_valid_loss.as_default(): + tf.summary.scalar('loss_trn', loss.numpy(), step=step) + tf.summary.scalar('loss_val', self.test_loss.result(), step=step) + + print('****** test loss, acc, lr: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(), + self.optimizer._decayed_lr('float32').numpy()) + + step += 1 + print('train loss: ', loss.numpy()) + + proc_batch_cnt += 1 + n_samples += data.shape[0] + print('proc_batch_cnt: ', proc_batch_cnt, n_samples) + + t1 = datetime.datetime.now().timestamp() + print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0)) + total_time += (t1-t0) + + self.reset_test_metrics() + for data, label in self.test_dataset: + ds = tf.data.Dataset.from_tensor_slices((data, label)) + ds = ds.batch(BATCH_SIZE) + for mini_batch in ds: + self.test_step(mini_batch[0], mini_batch[1]) + + print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy()) + print('------------------------------------------------------') + + tst_loss = self.test_loss.result().numpy() + if tst_loss < best_test_loss: + best_test_loss = tst_loss + ckpt_manager.save() + + if EARLY_STOP and es.check_stop(tst_loss): + break + + print('total time: ', total_time) + self.writer_train.close() + self.writer_valid.close() + self.writer_train_valid_loss.close() + + def build_model(self): + self.build_srcnn() + self.model = tf.keras.Model(self.inputs, self.logits) + + def restore(self, ckpt_dir): + + ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) + ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) + ckpt.restore(ckpt_manager.latest_checkpoint) + + self.reset_test_metrics() + + for data, label in self.test_dataset: + ds = tf.data.Dataset.from_tensor_slices((data, label)) + ds = ds.batch(BATCH_SIZE) + for mini_batch_test in ds: + self.predict(mini_batch_test[0], mini_batch_test[1]) + + print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy()) + + labels = np.concatenate(self.test_labels) + preds = np.concatenate(self.test_preds) + print(labels.shape, preds.shape) + + labels_denorm = denormalize(labels, label_param, mean_std_dct) + preds_denorm = denormalize(preds, label_param, mean_std_dct) + # labels_denorm = descale(labels, label_param, mean_std_dct) + # preds_denorm = descale(preds, label_param, mean_std_dct) + + return labels_denorm, preds_denorm + + def do_evaluate(self, inputs, ckpt_dir): + + ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) + ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) + ckpt.restore(ckpt_manager.latest_checkpoint) + + self.reset_test_metrics() + + pred = self.model([inputs], training=False) + self.test_probs = pred + pred = pred.numpy() + + return pred + + def run(self, directory, ckpt_dir=None, num_data_samples=50000): + train_data_files = glob.glob(directory+'train*mres*.npy') + valid_data_files = glob.glob(directory+'valid*mres*.npy') + train_label_files = [f.replace('mres', 'ires') for f in train_data_files] + valid_label_files = [f.replace('mres', 'ires') for f in valid_data_files] + self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, num_data_samples) + + self.build_model() + self.build_training() + self.build_evaluation() + self.do_training(ckpt_dir=ckpt_dir) + + def run_restore(self, directory, ckpt_dir): + self.num_data_samples = 1000 + + valid_data_files = glob.glob(directory + 'valid*mres*.npy') + valid_label_files = [f.replace('mres', 'ires') for f in valid_data_files] + self.setup_test_pipeline(valid_data_files, valid_label_files) + + self.build_model() + self.build_training() + self.build_evaluation() + return self.restore(ckpt_dir) + + def run_evaluate(self, data, ckpt_dir): + # data = tf.convert_to_tensor(data, dtype=tf.float32) + self.num_data_samples = 80000 + self.build_model() + self.build_training() + self.build_evaluation() + return self.do_evaluate(data, ckpt_dir) + + def setup_inference(self, ckpt_dir): + self.num_data_samples = 80000 + self.build_model() + self.build_training() + self.build_evaluation() + + ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) + ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) + ckpt.restore(ckpt_manager.latest_checkpoint) + + def do_inference(self, inputs): + self.reset_test_metrics() + + pred = self.model([inputs], training=False) + self.test_probs = pred + pred = pred.numpy() + + return pred + + def run_inference(self, in_file, out_file): + gc.collect() + t0 = time.time() + + h5f = h5py.File(in_file, 'r') + + refl = get_grid_values_all(h5f, 'refl_0_65um_nom') + LEN_Y, LEN_X = refl.shape + bt = get_grid_values_all(h5f, 'temp_11_0um_nom') + cld_opd = get_grid_values_all(h5f, 'cld_opd_dcomp') + refl_sub_lo = get_grid_values_all(h5f, 'refl_0_65um_nom_min_sub') + refl_sub_hi = get_grid_values_all(h5f, 'refl_0_65um_nom_max_sub') + refl_sub_std = get_grid_values_all(h5f, 'refl_0_65um_nom_stddev_sub') + t1 = time.time() + print('read data time: ', (t1 - t0)) + + cld_opd_sres = self.run_inference_(bt, refl, refl_sub_lo, refl_sub_hi, refl_sub_std, cld_opd, 2*LEN_Y, 2*LEN_X) + + cld_opd_sres_out = np.zeros((LEN_Y, LEN_X), dtype=np.int8) + border = int((KERNEL_SIZE - 1) / 2) + cld_opd_sres_out[border:LEN_Y - border, border:LEN_X - border] = cld_opd_sres[0, :, :] + + h5f.close() + + if out_file is not None: + np.save(out_file, (cld_opd_sres, bt, refl, cld_opd)) + else: + return cld_opd_sres + + def run_inference_(self, bt, refl, refl_sub_lo, refl_sub_hi, refl_sub_std, cld_opd, LEN_Y, LEN_X): + + self.slc_x_m = slice(1, int(LEN_X / 2) + 4) + self.slc_y_m = slice(1, int(LEN_Y / 2) + 4) + self.slc_x = slice(3, LEN_X + 5) + self.slc_y = slice(3, LEN_Y + 5) + self.slc_x_2 = slice(2, LEN_X + 7, 2) + self.slc_y_2 = slice(2, LEN_Y + 7, 2) + self.x_2 = np.arange(int(LEN_X / 2) + 3) + self.y_2 = np.arange(int(LEN_Y / 2) + 3) + self.t = np.arange(0, int(LEN_X / 2) + 3, 0.5) + self.s = np.arange(0, int(LEN_Y / 2) + 3, 0.5) + self.x_k = slice(1, LEN_X + 3) + self.y_k = slice(1, LEN_Y + 3) + + t0 = time.time() + bt = np.where(np.isnan(bt), 0, bt) + bt = bt[self.slc_y_m, self.slc_x_m] + bt = np.expand_dims(bt, axis=0) + # bt_us = upsample_static(bt, x_2, y_2, t, s, None, None) + bt_us = self.upsample(bt) + bt_us = smooth_2d(bt_us) + bt_us = normalize(bt_us, 'temp_11_0um_nom', mean_std_dct) + + refl = np.where(np.isnan(refl), 0, refl) + refl = refl[self.slc_y_m, self.slc_x_m] + refl = np.expand_dims(refl, axis=0) + refl_us = self.upsample(refl) + refl_us = smooth_2d(refl_us) + refl_us = normalize(refl_us, 'refl_0_65um_nom', mean_std_dct) + + cld_opd = np.where(np.isnan(cld_opd), 0, cld_opd) + cld_opd = cld_opd[self.slc_y_m, self.slc_x_m] + cld_opd = np.expand_dims(cld_opd, axis=0) + # cld_opd_us = upsample_static(cld_opd, x_2, y_2, t, s, None, None) + cld_opd_us = self.upsample(cld_opd) + cld_opd_us = smooth_2d(cld_opd_us) + cld_opd_us = normalize(cld_opd_us, label_param, mean_std_dct) + + refl_sub_lo = np.expand_dims(refl_sub_lo, axis=0) + refl_sub_lo = upsample_nearest(refl_sub_lo) + refl_sub_lo = refl_sub_lo[self.slc_y, self.slc_x] + refl_sub_lo = normalize(refl_sub_lo, 'refl_0_65um_nom', mean_std_dct) + + refl_sub_hi = np.expand_dims(refl_sub_hi, axis=0) + refl_sub_hi = upsample_nearest(refl_sub_hi) + refl_sub_hi = refl_sub_hi[self.slc_y, self.slc_x] + refl_sub_hi = normalize(refl_sub_hi, 'refl_0_65um_nom', mean_std_dct) + + refl_sub_std = np.expand_dims(refl_sub_std, axis=0) + refl_sub_std = upsample_nearest(refl_sub_std) + refl_sub_std = refl_sub_std[self.slc_y, self.slc_x] + + t1 = time.time() + print('upsample/normalize time: ', (t1 - t0)) + + data = np.stack([bt_us, refl_us, refl_sub_lo, refl_sub_hi, refl_sub_std, cld_opd_us], axis=3) + + cld_opd_sres = self.do_inference(data) + cld_opd_sres = denormalize(cld_opd_sres, label_param, mean_std_dct) + + return cld_opd_sres + + +def run_restore_static(directory, ckpt_dir, out_file=None): + nn = SRCNN() + labels_denorm, preds_denorm = nn.run_restore(directory, ckpt_dir) + if out_file is not None: + np.save(out_file, [labels_denorm, preds_denorm]) + + +def run_evaluate_static(in_file, out_file, ckpt_dir): + + h5f = h5py.File(in_file, 'r') + + refl = get_grid_values_all(h5f, 'refl_0_65um_nom') + LEN_Y, LEN_X = refl.shape + print(LEN_Y, LEN_X) + + bt = get_grid_values_all(h5f, 'temp_11_0um_nom') + + cld_opd = get_grid_values_all(h5f, 'cld_opd_dcomp_1') + + refl_sub_lo = get_grid_values_all(h5f, 'refl_0_65um_nom_min_sub') + refl_sub_hi = get_grid_values_all(h5f, 'refl_0_65um_nom_max_sub') + refl_sub_std = get_grid_values_all(h5f, 'refl_0_65um_nom_stddev_sub') + + nn = SRCNN() + + slc_x = slice(0, (LEN_X - 16) + 4) + slc_y = slice(0, (LEN_Y - 16) + 4) + x_2 = np.arange((LEN_X - 16) + 4) + y_2 = np.arange((LEN_Y - 16) + 4) + t = np.arange(0, (LEN_X - 16) + 4, 0.5) + s = np.arange(0, (LEN_Y - 16) + 4, 0.5) + + refl = np.where(np.isnan(refl), 0, bt) + refl = refl[slc_y, slc_x] + refl = np.expand_dims(refl, axis=0) + refl_us = upsample_static(refl, x_2, y_2, t, s, None, None) + print(refl_us.shape) + refl_us = normalize(refl_us, 'refl_0_65um_nom', mean_std_dct) + print('REFL done') + + bt = np.where(np.isnan(bt), 0, bt) + bt = bt[slc_y, slc_x] + bt = np.expand_dims(bt, axis=0) + bt_us = upsample_static(bt, x_2, y_2, t, s, None, None) + bt_us = normalize(bt_us, 'temp_11_0um_nom', mean_std_dct) + print('BT done') + + refl_sub_lo = refl_sub_lo[slc_y, slc_x] + refl_sub_lo = np.expand_dims(refl_sub_lo, axis=0) + refl_sub_lo = upsample_nearest(refl_sub_lo) + refl_sub_lo = normalize(refl_sub_lo, 'refl_0_65um_nom', mean_std_dct) + + refl_sub_hi = refl_sub_hi[slc_y, slc_x] + refl_sub_hi = np.expand_dims(refl_sub_hi, axis=0) + refl_sub_hi = upsample_nearest(refl_sub_hi) + refl_sub_hi = normalize(refl_sub_hi, 'refl_0_65um_nom', mean_std_dct) + + refl_sub_std = refl_sub_std[slc_y, slc_x] + refl_sub_std = np.expand_dims(refl_sub_std, axis=0) + refl_sub_std = upsample_nearest(refl_sub_std) + + cld_opd = np.where(np.isnan(cld_opd), 0, cld_opd) + cld_opd = cld_opd[slc_y, slc_x] + cld_opd = np.expand_dims(cld_opd, axis=0) + cld_opd_us = upsample_static(cld_opd, x_2, y_2, t, s, None, None) + cld_opd_us = normalize(cld_opd_us, label_param, mean_std_dct) + print('OPD done') + + # data = np.stack([bt_us, refl_us, refl_sub_lo, refl_sub_hi, refl_sub_std, cld_opd_us], axis=3) + data = np.stack([bt_us, refl_us, cld_opd_us], axis=3) + print('INPUT: ', data.shape) + + cld_opd_sres = nn.run_evaluate(data, ckpt_dir) + # cld_opd_sres = descale(cld_opd_sres, label_param, mean_std_dct) + cld_opd_sres = denormalize(cld_opd_sres, label_param, mean_std_dct) + _, ylen, xlen, _ = cld_opd_sres.shape + print('OUT: ', ylen, xlen) + + cld_opd_sres_out = np.zeros((2*LEN_Y, 2*LEN_X), dtype=np.float32) + refl_out = np.zeros((LEN_Y, LEN_X), dtype=np.float32) + cld_opd_out = np.zeros((LEN_Y, LEN_X), dtype=np.float32) + + border = int((KERNEL_SIZE - 1) / 2) + cld_opd_sres_out[border:(border+ylen), border:(border+xlen)] = cld_opd_sres[0, :, :, 0] + # refl_out[0:(ylen+2*border), 0:(xlen+2*border)] = refl[0, :, :] + # cld_opd_out[0:(ylen+2*border), 0:(xlen+2*border)] = cld_opd[0, :, :] + + # refl_out = denormalize(refl_out, 'refl_0_65um_nom', mean_std_dct) + # cld_opd_out = denormalize(cld_opd_out, label_param, mean_std_dct) + + h5f.close() + + if out_file is not None: + # np.save(out_file, (cld_opd_sres_out, refl_out, cld_opd_out, cld_opd_hres)) + np.save(out_file, cld_opd_sres_out) + else: + return cld_opd_sres_out, bt, refl + + +if __name__ == "__main__": + nn = SRCNN() + nn.run('matchup_filename') -- GitLab