diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index df345514a8eab11827ab5a50dd7e322f11dcd0b9..e609c30a3dedc827a9b9ee0934855de05928486a 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -56,7 +56,7 @@ label_params = ['cloud_fraction'] DO_ZERO_OUT = False -label_idx = 3 +label_idx = 4 label_param = params[label_idx] print('data_params: ', data_params) print('label_params: ', label_params) @@ -396,11 +396,11 @@ class SRCNN: conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_2', scale=scale) - conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', scale=scale) + # conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', scale=scale) - conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', scale=scale) + # conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', scale=scale) - conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', scale=scale) + # conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', scale=scale) conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, kernel_initializer='he_uniform', padding=padding)(conv_b) @@ -416,6 +416,7 @@ class SRCNN: # self.loss = tf.keras.losses.BinaryCrossentropy(from_logits=False) # for two-class only # else: # self.loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False) # For multi-class + # self.loss = tf.keras.losses.MeanAbsoluteError() # Regression self.loss = tf.keras.losses.MeanSquaredError() # Regression # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)