diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index 343502bdc0fb39691fd75c7e31c1cceea46ac333..8431a6c73916a1567ccb1a60586d29424821e258 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -56,7 +56,8 @@ label_param = 'cld_opd_dcomp' # label_param = 'cloud_probability' params = ['temp_11_0um_nom', 'temp_12_0um_nom', 'refl_0_65um_nom', label_param] -data_params = ['temp_11_0um_nom'] +# data_params = ['temp_11_0um_nom'] +data_params = [] label_idx = params.index(label_param) @@ -462,7 +463,7 @@ class SRCNN: activation = tf.nn.relu momentum = 0.99 - num_filters = 48 + num_filters = 64 input_2d = self.inputs[0] print('input: ', input_2d.shape) @@ -485,6 +486,8 @@ class SRCNN: conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', kernel_size=KERNEL_SIZE, scale=scale) + conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_6', kernel_size=KERNEL_SIZE, scale=scale) + conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, activation=activation, kernel_initializer='he_uniform', padding=padding)(conv_b) conv = conv + conv_b