From 92de8089520a7f4a3d262ea5163b6caa4381318b Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Tue, 27 Sep 2022 10:24:31 -0500 Subject: [PATCH] snapshot... --- modules/deeplearning/srcnn_l1b_l2.py | 11 ++++------- 1 file changed, 4 insertions(+), 7 deletions(-) diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index 2c8305d1..859c4942 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -198,15 +198,12 @@ class SRCNN: files = self.test_data_files data_s = [] - label_s = [] for k in idxs: f = files[k] nda = np.load(f) - data_s.append(nda[0:len(data_params), :, :]) - label_s.append(nda[3, :, :]) + data_s.append(nda) data = np.concatenate(data_s) - label = np.concatenate(label_s) add_noise = None noise_scale = None @@ -215,7 +212,7 @@ class SRCNN: noise_scale = 0.005 data_norm = [] - for k, param in enumerate(data_params): + for k, param in enumerate(params): tmp = data[:, k, 3:131:2, 3:131:2] tmp = resample(y_64, x_64, tmp, s, t) tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) @@ -223,8 +220,8 @@ class SRCNN: data = np.stack(data_norm, axis=3) data = data.astype(np.float32) - # label = label[:, 3:131:2, 3:131:2] - label = label[:, 3:131, 3:131] + # label = data[:, label_idx, 3:131:2, 3:131:2] + label = data[:, label_idx, 3:131, 3:131] label = np.expand_dims(label, axis=3) if label_param != 'cloud_fraction': label = normalize(label, label_param, mean_std_dct) -- GitLab