From 92948d16bf0ffd0b0b771f688b44b897de947c6a Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Tue, 31 Jan 2023 13:26:25 -0600 Subject: [PATCH] initial commit... --- modules/util/viirs_surfrad.py | 17 ++++++----------- 1 file changed, 6 insertions(+), 11 deletions(-) diff --git a/modules/util/viirs_surfrad.py b/modules/util/viirs_surfrad.py index bdc2ff8b..a01e8c47 100644 --- a/modules/util/viirs_surfrad.py +++ b/modules/util/viirs_surfrad.py @@ -101,14 +101,12 @@ def process_cld_opd_(grd_k): return grd_k -def run_all(directory, out_directory, day_night='ANY', start=10): +def run_all(directory, out_directory, day_night='ANY', pattern='clavrx_*.nc', start=10): cnt = start total_num_train_samples = 0 total_num_valid_samples = 0 num_keep_x_tiles = 8 - pattern = 'clavrx_VNP02MOD*.highres.nc.level2.nc' - pattern = 'clavrx_*.nc' path = directory + '**' + '/' + pattern data_files = glob.glob(path, recursive=True) @@ -120,7 +118,6 @@ def run_all(directory, out_directory, day_night='ANY', start=10): f_cnt = 0 num_files = len(data_files) - print('Start, number of files: ', num_files) for idx, data_f in enumerate(data_files): @@ -138,13 +135,11 @@ def run_all(directory, out_directory, day_night='ANY', start=10): except Exception as e: print(e) h5f.close() - # label_h5f.close() continue print(data_f) f_cnt += 1 h5f.close() - # label_h5f.close() if len(data_train_tiles) == 0: continue @@ -152,16 +147,16 @@ def run_all(directory, out_directory, day_night='ANY', start=10): if (f_cnt % 5) == 0: num_valid_samples = 0 if len(data_valid_tiles) > 0: - # label_valid = np.stack(label_valid_tiles) + label_valid = np.stack(label_valid_tiles) data_valid = np.stack(data_valid_tiles) np.save(out_directory + 'data_valid_' + str(cnt), data_valid) - # np.save(out_directory+'label_valid_' + str(cnt), label_valid) + np.save(out_directory + 'label_valid_' + str(cnt), label_valid) num_valid_samples = data_valid.shape[0] - # label_train = np.stack(label_train_tiles) - # np.save(out_directory+'label_train_' + str(cnt), label_train) + label_train = np.stack(label_train_tiles) data_train = np.stack(data_train_tiles) - np.save(out_directory+'data_train_' + str(cnt), data_train) + np.save(out_directory + 'label_train_' + str(cnt), label_train) + np.save(out_directory + 'data_train_' + str(cnt), data_train) num_train_samples = data_train.shape[0] label_valid_tiles = [] -- GitLab