diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index 4084fdb6bdda973a4f5974941f136950f648f7c8..5519fa21c4d6ca420667aca37af844495d6f2164 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -727,8 +727,8 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): h5f = h5py.File(in_file, 'r') grd_a = get_grid_values_all(h5f, 'super/temp_11_0um') - grd_a = grd_a[y_0:y_0+sub_y, x_0:x_0+sub_x] grd_a = np.where(np.isnan(grd_a), 0, grd_a) + grd_a = grd_a[y_0:y_0+sub_y, x_0:x_0+sub_x] hr_grd_a = grd_a.copy() grd_a = upsample_one(grd_a) grd_a = normalize(grd_a, 'super/temp_11_0um', mean_std_dct) @@ -736,21 +736,20 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): # ------------------------------------------------------ grd_b = get_grid_values_all(h5f, 'super/refl_0_65um') - grd_b = grd_b[y_0:y_0+sub_y, x_0:x_0+sub_x] grd_b = np.where(np.isnan(grd_b), 0, grd_b) + grd_b = grd_b[y_0:y_0+sub_y, x_0:x_0+sub_x] hr_grd_b = grd_b.copy() hr_grd_b = hr_grd_b[y_128, x_128] # Full res: - grd_b = grd_b[slc_y, slc_x] grd_b = normalize(grd_b, 'super/refl_0_65um', mean_std_dct) + grd_b = grd_b[slc_y, slc_x] grd_c = get_grid_values_all(h5f, 'super/'+label_param) + grd_c = np.where(np.isnan(grd_c), 0, grd_c) grd_c = grd_c[y_0:y_0+sub_y, x_0:x_0+sub_x] hr_grd_c = grd_c.copy() - hr_grd_c = np.where(np.isnan(hr_grd_c), 0, grd_c) hr_grd_c = hr_grd_c[y_128, x_128] - grd_c = np.where(np.isnan(grd_c), 0, grd_c) grd_c = upsample_one(grd_c) if label_param != 'cloud_probability': grd_c = normalize(grd_c, 'super/'+label_param, mean_std_dct)